
The closure Problem 

A statistical approach is used because turbulence consists of random fluctuations of the 

various flow properties. Reynolds (1895) introduced the procedure by in which all quantities 

are expressed as the sum of mean and fluctuating parts. Hence, the mean of the continuity and 

Navier Stokes equations is formed term by term. 

 

The nonlinearity of the Navier-Stokes equation leads to the appearance of momentum fluxes 

(unknowna priori) that actas apparent stresses throughout the flow. Equations for these 

stresses, which include additionalunknown quantities,are derived. This illustrates the issue of 

closure, i.e., establishing asufficient number of equations for all of the unknowns.  

 

A discussion of turbulence scales and more-advanced statistical concepts will be considered. 

To illustrate the nature of turbulence statistics, it is instructive to observehow the velocity 

field behaves for a turbulent flow.  

 
Figure shows Instantaneous boundary-layer velocity profiles at the same distancefrom the 

leading edge of a flat plate at 17 different instantsusing the hydrogen-bubble technique. The 

profiles areshown with a series of staggered origins. They appear incorrectly multivalued in a 

few locations, the measuredvelocity profiles correctly show that the velocity profile changes 

shape ratherdramatically from one instant to the next. 

 
The left figure displays all of the velocity profiles, only this time with a commonorigin. 

Clearly, there is a large scatter in the value of the velocity at eachdistance y from the surface. 

The right figure shows a standard mean velocity profilefor a boundary layer at the same 

Reynolds number. Comparison of the profilesin (a) and (b) clearly illustrates that the 

turbulent fluctuations in the velocitycannot be regarded as a small perturbation relative to the 

mean value.  

 

Reynolds Averaging 

The averaging concepts were introduced by Reynolds (1895). In general,Reynolds averaging 

assumes a variety of forms involving either an integral or a summation. The general termused 

to describe these averaging processes is "mean." 

 

The three forms most pertinent in turbulence-model research are: 



1. The time average 

2. The spatial average  

3. The ensemble average 

 

1. Time averaging  

It is appropriate for stationary turbulence;a turbulentflow that, on the average, does not vary 

with time, such as flow in a pipe drivenby a constant-speed blower. 

 

For such a flow, we express an instantaneous flow variable as f(x, t). Its time average, FT(x), 

is defined by 

 
 

This velocity profile was obtained using time averaging for accurate measurements 

of a similar boundary layer.  

The applicability of Reynolds averaging depends upon this steadiness of mean values.  

Time averaging is the most commonly used form of Reynolds averaging because most 

turbulent flows of interest in engineering are stationary. 

 

2. Spatial averaging  

It can be used for homogeneous turbulence, which is aturbulent flow that, on the average, is 

uniform in all directions. It is averaged overall spatial coordinates by doing a volume integral.  

 
 

3. Ensemble averaging  

It is the most general type of Reynolds averaging suitableforflows that decay in time.  

From N identical experiments (with initial and boundary conditionsthat differ by random 

infinitesimal perturbations)  

 
From this point on, only time averaging will be considered. Moreover, consider a stationary 

turbulent flow. 

 
For such a flow, the instantaneous velocityis expressed. 

 



 
 

 
Figure shows the time averaging for stationary turbulence. Although covered by thescale of 

the graph, the instantaneous velocity, ui(x, t), has continuous derivativesof all order. 

 

 While the above equations are mathematically well defined, it can never truly be realized 

infinite T in any physical flow. This is not a serious problem in practice. 

 In establishing time average, as illustrated in figure, a time T is just selected that is very 

long relative to the maximum period of the velocity fluctuations, T1.  

An example,  

For flow at 10 m/sec in a 5 cm diameter pipe, anintegration time of 20 seconds would 

probably be adequate. In this time the flowmoves 4000 pipe diameters. 

 

There are some flows for which the mean flow contains very slow variationswith time that 

are not turbulent in nature. For instance, we might impose aslowly varying periodic pressure 

gradient in a duct or we might wish to computeflow over a helicopter blade or flow through 

an automobile muffler.  

 
Figure shows the time averaging for non-stationary turbulence. Although covered by thescale 

of the graph, the instantaneous velocity, ui(x, t), has continuous derivativesof all order. 



 

 
where T2 is the time scale characteristic of the slow variations in the flow. It is 

implicitlyassuming that time scales T1 and T2 exist that differ by several orders of 

magnitude.Many unsteady flows of engineering interest do not satisfy this condition. 

Theseequations cannot be usedfor such flows because there is no distinctboundary between 

our imposed unsteadiness and turbulent fluctuations.  

Forsuch flows, the mean and fluctuating componentsare correlated, i.e., the time average of 

their product is non-vanishing. 

 

Correlations 

Thus far averages of linear quantities are considered. When theproduct of two properties is 

averaged, say Φ and Ψ, we have the following: 

 
 

There is a fact that the product of a mean quantity and afluctuating quantity has zero mean 

because the mean of the latter is zero.  

&  

Thereis no a priori reason for the mean of the product of two fluctuating quantitiesto vanish. 

 
 

 

 
 

 
 

Similarly, for a triple product 

 

 

 


