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Problems

4.1 We wish to create a new two-equation turbulence model. Our first variable is turbu-
lence kinetic energy, k, while our second variable is the “eddy acceleration,” a. Assuming
a has dimensions (length)/(time)?, use dimensional arguments to deduce plausible alge-
braic dependencies of eddy viscosity, vr, turbulence kinetic energy dissipation rate, €, and
turbulence length scale, ¢, upon k and a.

4.2 Starting with Equations (4.4) and (4.45), define ¢ = 8*wk and derive an “exact” w
equation.

4.3 Verify that the exact equation for the dissipation, ¢, is given by Equation (4.45). That
is, derive the equation that follows from taking the following moment of the Navier-Stokes
equation:

ou., o
Oz; Ozj
where N (u;) is the Navier-Stokes operator defined in Equation (2.26).

v W) =0

4.4 Derive the exact equation for the enstrophy, w?, defined by

——
w? = —2-wiw: where  w; = €;;60ui /O

That is, w; is the fluctuating vorticity. HINT: Beginning with the Navier-Stokes equation,
derive the equation for the vorticity, multiply by w;, and time average. The vector identity

u-Vu =V (%u-u) —uX (Vxu) should prove useful in deriving the vorticity equation.

4.5 Beginning with the k-e model, make the formal change of variables ¢ = C,wk and
derive the implied k-w model. Express your final results in standard k-w model notation
and deternine the implied values for o, 3, 8%, o, 0* and o4 in terms of Cy, Ce1, Ce2,
ok and o..

4.6 Beginning with the k-w model and with 0 = ¢* = 1/2 and 04 = 0, make the formal
change of variables ¢ = (3*wk and derive the implied k-¢ model. Express your final
results in standard k-e model notation and determine the implied values for C,, Ce1, Ce2,
ok and o in terms of o, B, 3*, o and o*. Assume fz = 1 and omit the stress limiter.

4.7 Simplify the k-¢, k-k¢, k-kT and k-7 models for the log layer. Determine the value of
Karman’s constant, «, implied by the closure coefficient values quoted in Equations (4.49),
(4.57), (4.63) and (4.66). Make a table of your results and include the value 0.40 for the
k-w model. NOTE: For all models, assume a solution of the fonn dU/dy = u-/(Ky),
k=u2/ \/6; and v = Ku,y. Also, C,, = Cp for the k-k¢ model.

4.8 Simplify the k-¢, k-k¢, k-kT and k-7 models for homogeneous, isotropic turbulence.
Determine the asymptotic decay rate for k£ as a function of the closure coefficient values
quoted in Equations (4.49), (4.57), (4.63) and (4.66). Make a table of your results and
include the decay rate of ¢~'27 for the k-w model. (NOTE: You can ignore the (¢/ y)°
contribution to C., for the k-k¢ model.)
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4.9 Beginning with Equations (4.83), derive the self-similar form of the k-w model equa-
tions for the mixing layer between a fast stream moving with velocity U; and a slow
stream with velocity Uz. Omit the stress limiter so that vy = k/w.

(a) Assuming a streamfunction of the fortn ¥ (z,y) = Uiz F(n), transform the mo-
mentum equation, and verify that V is as given in Table 4.3.
(b) Transform the equations for k and w.

(c) State the boundary conditions on I/ and K for || — oo and for V(0). Assume
k - 0 as |y| — oo.

(d) Verify that if w 7# 0 in the freestream, the only boundary conditions consistent
with the similarity solution are:

-é—, n— +oo
Wn) =\ U /U,

Bo
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4.10 Using Programs WAKE, MIXER and JET (see Appendix C), determine the spread-
ing rates for the five basic free shear flows according to the k-w model with and without
the stress limiter. Compare your results in tabular forrn. HINT: The limiter is defined in
the array climit(j), whose value is set in Subroutine CALCS.

4.11 Derive Equation (4.145).
4.12 Demonstrate the integral constraint on U, (n) in the defect-layer solution.

4.13 Determine the shape factor to O(u-/Ue) according to the defect-layer solution.
Express your answer in terms of an integral involving Ui (7).

4.14 Using Program DEFECT (see Appendix C), determine the variation of Coles’ wake
strength, II, as a function of the equilibrium parameter, G, for Kok’s k-w model. Mod-
ify the program, noting that Kok’s model does not use the stress limiter and its closure
coefficients are « = 5/9, 8 = 3/40, * = 9/100, 0 = 1/2, 0* = 2/3 and 64, = 1/2.
Compare your results to the correlation IT = 0.60+0.51 87 —0.01 8. Do your computa-
tions for —0.35 < Br < 20. HINT: You can accomplish all of the required modifications
in Subroutine START by changing the values of the closure coefficients and noting that
setting clim equal to zero turns the stress limiter off.

4.15 Using Program DEFECT (see Appendix C), determine the variation of Coles’ wake
strength, II, as a function of the equilibrium parameter, G, for the Launder-Sharma k-€
model with a stress limiter included. Make a graph that includes values obtained with
and without a stress limiter and the correlation IT = 0.60 + 0.51 37 — 0.01 3%. Do your
computations for —0.35 < Br < 20. HINT: The limiter is defined in the array climit(j),
whose value is set in Subroutine CALCS. Its algebraic form is identical for the k-w and
k-¢ models, so all you have to do is activate it for the k- model. Set the constant clim
equal to 1 to maximize the effect of the limiter.
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4.16 Consider a flow with freestream velocity U, past a wavy wall whose shape is
= L4, sin ( 2m )
y=3" Nk,

where ks is the peak to valley amplitude and Nk is wavelength. The linearized incom-
pressible solution is U = Uss + u’, V = v’ where

o =" (—2”y)sin(2"y) o' = TV ox (—27ry)cos(27ry)
=N P\ Nk, Nk./’ =N "P\" Nk, Nk,

Making an analogy between this linearized solution and the fluctuating velocity field in a
turbulent flow, compute the specific dissipation rate, w = €/{3"k). Ignore contributions
from the other fluctuating velocity component, w’.

4.17 For the k-w model, very close to the surface and deep within the viscous sublayer,
dissipation balances molecular diffusion in the w equation. Assuming a solution of the
form w = ww /(1 + Ay)?, solve this equation for w = wy, at y = 0. Determine the
limiting form of the solution as w,, — oo.

4.18 Using Program SUBLAY (see Appendix C), determine the variation of the constant
C in the law of the wall for the k-w model with the surface value of w. Do your
computations with (nvisc = 0) and without (nvisc = 1) viscous modifications. Let w,
assume the values 1, 3, 10, 30, 100, 300, 1000 and co. Be sure to use the approprxate
value for input parameter iruff. Present your results in tabular form.

4.19 This problem studies the effect of viscous-modification closure coefficients for the
k-w model using Program SUBLAY (see Appendix C).

(a) Modify Subroutine START to permit inputting the values of Rx and R., (program

variables rk and »w). Determine the value of R., that yields a smooth-wall constant
in the law of the wall, C, of 5.0 for Ry = 4, 6, 8, 10 and 20.

(b) Now make provision for inputting the value of Rg (program variable rb). For
R = 6, determine the value of R., that yields C = 5.0 when R = 2, 4, 8, and
12. Also, determine the maximum value of k* tor each case.

4.20 Consider incompressible Couette flow with constant pressure, i.e., flow between two
parallel plates separated by a distance H, the lower at rest and the upper moving with
constant velocity Uw.

Problems 4.20 and 4.21

(a) Assuming the plates are infinite in extent, simplify the conservation of mass and
momentum equations and verify that

(u+uT)d—U =’
dy
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(b) Now ignore molecular viscosity. What boundary condition on U is appropriate at
the lower plate?

(¢) Introducing the mixing length given by
emiz = ny(l - y/H)
solve for the velocity across the channel. HINT: Using partial fractions:

1.3
v(l—-y/H) vy (H-vy)

Don’t forget to use the boundary condition stated in Part (b).

(d) Develop a relation between friction velocity, u,, and the average velocity,

1 H
Uavg = ﬁf U(y) dy
4]

(e) Using the k-w model, simplify the equations for £ and w with the same assumptions
made in Parts (a) and (b).

(f) Deduce the equations for £ and w that follow from changing independent variables

from y to U so that
d_ 29

T —

dy = Ur au

(g) Assuming k = u2 /+/B3*, simplify the equation for w. NOTE: You might want to
use the fact that ov/B*k% = 8, — a8*.

4.21 For incompressible, laminar Couette flow, we know that the velocity is given by

=yu,L

U=U, 171

where U, is the velocity of the moving wall, y is distance form the stationary wall, and
H is the distance between the walls.

(a) Noting that the stress limiter is inactive for laminar flow, determine the maximum
Reynolds number,
Ren, = Uy,H:/v
at which the flow remains laminar according to the high-Reynolds-number version

of the k-w model. To arrive at your answer, you may assume that

6v

——,
W = Boy 6

Bo(H —y)?’

0<y< H/2

H/2<y<H

(b) Above what Reynolds number is w amplified?
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4.22 Using Program PIPE (see Appendix C), compute the skin friction for channel flow
according to the Baldwin-Barth and Spalart-Allmaras models. Compare your results
with the Halleen-Johnston correlation [Equation (3.139)] for 103 < Rey < 10°. Also,
compare the computed velocity profiles for Rey = 13750 with the Mansour et al. DNS
data, which are as follows.

(v/(H/2) | U/Um [[ y/(H/2) | U/Un [[ y/(H/2) | U/Un
0.000 0.000 0.404 0.887 0.805 0.984
0.103 0.717 0.500 0.917 0.902 0.995
0.207 0.800 0.602 0.945 1.000 1.000
0.305 0.849 0.710 0.968

4.23 Using Program PIPE (see Appendix C), compute the skin friction for pipe flow
according to the Baldwin-Barth and Spalart-Allmaras models. Compare your results with
the Prandtl correlation [Equation (3.140)] for 10° < Rep < 10%. Also, compare the
computed velocity profiles for Rep = 40000 with Laufer’s data, which are as follows.

|Ly/(D/2) | U/Um ]| y/(D/2) | U/Um || y/(D/2) | U/Um |
0.010 0.333 0.390 0.868 0.800 0.975
0.095 0.696 0.490 0.902 0.900 0.990
0.210 0.789 0.590 0.931 1.000 1.000
0.280 0.833 0.690 0.961

4.24 The object of this problem is to compare predictions of one- and two-equation models
with measured properties of a turbulent boundary layer with adverse Vp. The experiment
to be simulated was conducted by Schubauer and Spangenberg [see Coles and Hirst
(1969) — Flow 4800]. Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL _DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the Baldwin-Barth model, the k-w model with viscous modifi-
cations and one of the k-¢ models and compare computed skin friction with the following
measured values.

| s (ft) cr [[ sf®) cr- s (ft) | cs

2.000 | 3.39-10°° 10.333 | 2.06-10~% 17.000 | 0.94.103
4500 | 2.94-1073 13.667 | 1.61-1073 17.833 | 0.49.10-3
7.000 | 2.55-103 15.333 | 1.39-103

4.25 The object of this problem is to compare predictions of one- and two-equation
models with measured properties of a turbulent boundary layer with adverse Vp. The
experiment to be simulated was conducted by Ludwieg and Tillman [see Coles and Hirst
(1969) — Flow 1200]. Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL_DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the k-w, Baldwin-Barth and Jones-Launder models and compare
computed skin friction with the following measured values.

[ s(m) | cf [[ s(m) | cf |
0.782 | 2.92.10=3 ] 2.282 | 1.94.10°3
1.282 | 2.49.10-3 || 2.782 | 1.55-10~3
1.782 | 2.05-10-3
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4.26 The object of this problem is to compare predictions of one- and two-equation models
with measured properties of a turbulent boundary layer with adverse Vp. The experiment
to be simulated was conducted by Schubauer and Spangenberg [see Coles and Hirst
(1969) — Flow 4400). Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL_DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the k-w model, one of the k- models and the Spalart-Alimaras
model and compare computed skin friction with the following measured values.

s (ft) cf {| s (f) cy [ s(®) | cr |
1.167 | 3.40-10—° || 3.667 | 2.86-10—° || 6.167 | 1.33-10™3
2.000 | 3.17-1073 4.500 | 2.38.1073
2.833 | 3.10-10—3 5.333 | 1.97.103

4.27 The object of this problem is to compare predictions of one- and two-equation models
with measured properties of a turbulent boundary layer with adverse Vp. The experiment
to be simulated was conducted by Stratford [see Coles and Hirst (1969) — Flow 5300].
Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL _DATA, and
the input data provided on the companion CD (see Appendix C). Do 3 computations
using the k-w model, one of the k-¢ models and the Spalart-Allmaras model and compare
computed skin friction with the following measured values.

s (f) cf | s@® ¢y ]
2.907 | 3.68-10-3 || 3.531 | 0.55-10~3
2999 | 2.07-10—3 || 4.103 | 0.53.10~3
3.038 | 0.99.10—3

4.28 The object of this problem is to predict the separation point for flow past a circular
cylinder with the boundary-layer equations, using the measured pressure distribution. The
experiment to be simulated was conducted by Patel (1968). Use Program EDDYBL
and its menu-driven setup utility, Program EDDYBL_DATA, to do the computations (see

Appendix C).

Problem 4.28

(a) Set freestream conditions to p;,, = 2147.7 Ib/fR%, T, = 529.6°R, Mo, = 0.144
(PTI1, TT1, XMA); use an initial stepsize, initial arclength and final arclength
given by As = 0.001 f, s; = 0.262 ft and sy = 0.785 ft (DS, SI, SSTOP); set the
initial boundary-layer properties so that ¢y = 0.00600, 6 = 0.006 ft, H = 1.40,
Reg = 929, (CF, DELTA, H, RETHET); set the maximum number of steps to
1000 (IEND1); and set up for N = 47 points to define the pressure (NUMBER).
Use the following data to define the pressure distribution. The initial and final
pressure gradients are zero. Use zero heat flux at the cylinder surface. Finally, set
the curvature, R}, equal to 4 ft ™.



236

(b)
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[ s(h) pe I/R%) | s (R) pe (/%) || s (®) pe_(Ib/R%)
0.0000 | 2.147540-109 0.1500 | 2.116199-10° 0.3500 | 2.055516-10%
0.0025 | 2.147528-103 || 0.1625 | 2.112205-10% || 0.3625 | 2.056591-10°3
0.0050 | 2.147491-10% || 0.1750 | 2.107903-10% || 0.3750 | 2.058435.10°
0.0075 | 2.147429-102 || 0.1875 | 2.103448-102 || 0.3875 | 2.061661.10°
0.0100 | 2.147343-102 || 02000 | 2.098378-102 || 0.4000 | 2.066423-103
0.0125 | 2147233.10% || 0.2125 | 2.093155-10% || 0.4125 | 2.071954-10%
0.0250 | 2.146314-10% || 0.2250 | 2.087317-103 || 0.4250 | 2.079021-10%
0.0375 | 2.144796-102 || 0.2375 | 2.081325-10% || 0.4375 | 2.085473-10°
0.0500 | 2.142688-102% || 0.2500 | 2.075334-10% || 0.4500 | 2.0891561-10%
0.0625 | 2.140018-10% || 0.2625 | 2.069189-10% || 0.4625 | 2.091004-103
0.0750 | 2.136807-10% || 0.2750 | 2.064580-10° || 0.4750 | 2.092080.103
0.0875 | 2.134021-10% || 0.2875 | 2.060893-10% || 0.4875 | 2.092230-10%
0.1000 | 2.130641-10% || 0.3000 | 2.058588-10% || 0.5000 | 2.092230-103
0.1125 | 2.127261-10% {{ 0.3125 | 2.056898-103 || 0.6500 | 2.092230-103
0.1250 | 2.123881-10% || 0.3250 | 2.055823-10% || 0.7850 | 2.092230-103
0.1375 | 2.120194-10% || 0.3375 | 2.055362-10°

Do three computations using the low-Reynolds-number k-w model, the Launder-
Sharma k-¢ model and the Spalart-Allmaras model. The radius of the cylinder
is R = 0.25 ft, so that separation arclength, ssep, is related to this angle by
Osep = T — Ssep/R.

4.29 Compute Driver and Seegmiller’s Rey = 37500 backstep flow using the Baldwin-
Lomax algebraic model. Use Program EDDY2C, its menu-driven setup utility, Program
EDDY2C_DATA, and the input data provided on the companion CD (see Appendix C).

(@)

(b)

©)

(d)

You must first run Program EDDYBL to establish flow properties at the upstream
boundary. Modify the supplied input-data file eddybl.dat, using trial and error to
adjust the “Maximum Arclength” (SSTOP) so that the Reynolds number based on
momentum thickness is 5000.

Modify the supplied input-data file eddy2c.dat for Program EDDY2C to run the
computation 1000 timesteps (NEND).

Make graphs of the “residual” and the value of reattachment length, z./H, as
functions of timestep number.

Discuss the value of z,/H predicted by the Baldwin-Lomax model relative to the
measured value and the values predicted by the k-w and k-¢ models.

NOTE: This computation will take about 30 minutes of CPU time on a 3-GHz Pentium-D
microcomputer.

4.30 Compute Jovic’s Rex = 5000 backstep flow using the Baldwin-Lomax algebraic
model. Use Program EDDY2C, its menu-driven setup utility, Program EDDY2C_DATA,
and the input data provided on the companion CD (see Appendix C).

(a) You must first run Program EDDYBL to establish flow properties at the upstream

(b)

boundary. Modify the supplied input-data file eddybl.dat, using trial and error to
adjust the “Maximum Arclength” (SSTOP) so that the Reynolds number based on
momentum thickness is 609.

Modify the supplied input-data file eddy2c.dat for Program EDDY2C to run the
computation 10000 timesteps (NEND).
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(c) Make graphs of the “residual” and the value of reattachment length, z,./H, as
functions of timestep number.

(d) Discuss the value of z./H predicted by the Baldwin-Lomax model relative to the
measured value and the value predicted by the k-w model.

NOTE: This computation will take about 3 hours of CPU time on a 3-GHz Pentium-D
microcomputer.



