College of Engineering \& Technology

Department: Mechanical Engineering
Marks: 20

Lecturer: Dr. Rola Afify
Time: 2:30-4:00
Course Code: ME464
Date: 14/5/2013

Name: Model Answer

Answer the following questions:

Question one (5 marks)

Why does the rod of a double-acting cylinder retract at a greater velocity than it extends for the same input flow rate?
$v_{\text {ext }}=\frac{Q}{A_{p}}$
$v_{\text {ret }}=\frac{Q}{\left(A_{p}-A_{r}\right)}$
$\mathrm{A}_{\mathrm{p}}>\left(\mathrm{A}_{\mathrm{p}}-\mathrm{A}_{\mathrm{r}}\right)$, thus $\mathrm{v}_{\text {ret }}>\mathrm{v}_{\text {ext }}$

Question two (10 marks)

Find the flow rate that an axial piston pump delivers at 1000 rpm . The pump has nine $15-\mathrm{mm}-$ diameter pistons arranged on a $125-\mathrm{mm}$-diameter piston circle. The offset angle is set at 10° and the volumetric efficiency is 94%.
$\mathrm{Q}_{\mathrm{T}}=\mathrm{A}_{\mathrm{p}} \times \mathrm{Y} \times \mathrm{S} \times \mathrm{N}=\mathrm{A}_{\mathrm{p}} \times \mathrm{Y} \times \mathrm{D} \tan \theta \times \mathrm{N}=0.0351 \mathrm{~m}^{3} / \mathrm{min}$
$Q_{A}=\eta_{v} x / Q_{T}=0.033 \mathrm{~m}^{3} / \mathrm{min}$

Question three (5 marks)

Write down the words that represent each of the following:

Single-Acting Hydraulic Cylinder

Variable Displacement Vane Pump

Swash Plate Design Axial Piston Pump

Piston Pump

Telescopic cylinder

