College of Engineering \& Technology

Department: Mechanical Engineering
Lecturer: Dr. Rola Afify
Course Code: ME362
Marks: 8
Time: 9:30-10:10
Date: 3/12/2016

Answer the following questions:

Question one (4 marks)

The inverted U-tube manometer contains water and oil (SG. $=0.9$), as shown in figure. The pressure difference between pipes A and $B, P_{A}-P_{B}=-5 \mathrm{kPa}$. Determine the differential reading h.

$$
p_{A}-\gamma_{H_{2 O}}(0.2 \mathrm{~m})+\gamma_{o i l}(h)+\gamma_{H_{2 O}}(0.3 \mathrm{~m})=p_{B}
$$

Thus,

$$
\begin{aligned}
h & =\frac{\left(P_{B}-P_{A}\right)+\gamma_{H_{2 O}}(0.2 \mathrm{~m})-\gamma_{H_{2 O}}(0.3 \mathrm{~m})}{\gamma_{0 i 1}} \\
& =\frac{5 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\left(9.80 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(0.1 \mathrm{~m})}{8.95 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{3}}}=0.449 \mathrm{~m}
\end{aligned}
$$

Question two (4 marks)

A rectangular gate, 3 m wide and 8 m high, is located at the end of a rectangular passage that is connected to a large open tank filled with water, as shown in figure. The gate is hinged at its bottom and held closed by a horizontal force, F_{H}, located at the center of the gate. The maximum value of F_{H} is 3500 kN . Determine the maximum water depth, h, above the center of the gate that can exist without the gate opining.

$$
\begin{aligned}
F_{R} & =\gamma h_{c} A=\left(9.80 \frac{\mathrm{kN}}{\mathrm{~m}^{3}}\right)(h)(3 \mathrm{~m} \times 8 \mathrm{~m}) \\
& =(9.80 \times 24 h) k N \\
y_{R} & =\frac{E \times c}{y_{c} A}+y_{c}=\frac{\frac{1}{12}(3 \mathrm{~m})(8 \mathrm{~m})^{3}}{h(3 \mathrm{~m} \times 8 \mathrm{~m})}+h \\
& =\frac{5.33}{h}+h
\end{aligned}
$$

For gate hinged at top

$$
\sum M_{H}=0
$$

so that

$$
\begin{equation*}
(4 m) F_{H}=l, F_{R} \quad(\text { see figure }) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Where } \\
& \begin{aligned}
l_{1} & =y_{2}-(h-4)=\left(\frac{5.33}{7}+h\right)-(h-4) \\
& =\frac{5.33}{h}+4
\end{aligned}
\end{aligned}
$$

$$
l_{1}=y_{R}-(h-4)
$$

Thus, from Eq. (1)

$$
(4 \mathrm{~m})(3500 \mathrm{kN})=\left(\frac{5.33}{h}+4\right)(9.80 \times 24)(h) k N
$$

and

$$
h=13.5 \mathrm{~m}
$$

