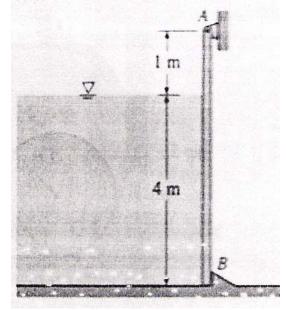
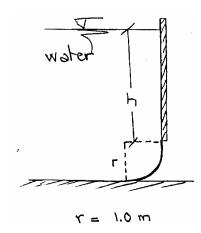


College of Engineering & Technology

Department: Mechanical Engineering Marks: 20

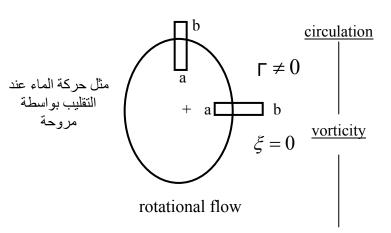

Lecturer: Dr. Rola Afify
Course Code: ME362

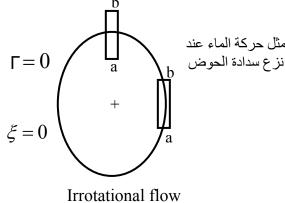
Time: 8:30 – 10:10
Date: 22/4/2015

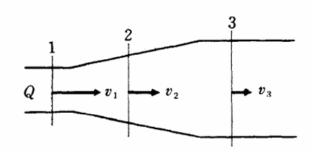

Name: **Model Answer** R. N.:

Answer the following questions: Question one (10 marks)

A) A 5 m high and 5 m wide rectangular plate blocks the end of a 4 m deep freshwater channel as shown in Figure. The plate is hinged about a horizontal axis along its upper edge through a point A and is restrained from opening by a fixed ridge at point B. Determine the force exerted on the plate by the ridge.




B) If the resultant pressure force on the circular gate shown in Figure is inclined 50° to the horizontal. Calculate the height of water in the tank 'h' and the magnitude of the resultant pressure force on the gate. Given that gate width = 0.5 m.


Question two (10 marks)

A) Compare between Rotational and Irrotational flows.

B) Water is flowing in the conduit shown in figure. If the flow rate Q is 8 lit/s and the diameters d₁, d₂ and d₃ at sections 1, 2 and 3 are 50, 60 and 100 mm respectively, find the flow velocities v₁, v₂ and v₃. If the pressure P₁ at section 1 is 24.5 kPa, what is the pressure P₃ at sections 3?

To get flow velocities v₁, v₂ and v₃

$$Q = A_1 v_1 = A_2 v_2 = A_3 v_3$$

$$8x10^{-3} = (\frac{\pi}{4}d_1^2)v_1 = (\frac{\pi}{4}d_2^2)v_2 = (\frac{\pi}{4}d_3^2)v_3$$

$$8x10^{-3} = (\frac{\pi}{4}(50x10^{-3})^2)v_1 = (\frac{\pi}{4}(60x10^{-3})^2)v_2 = (\frac{\pi}{4}(100x10^{-3})^2)v_3$$

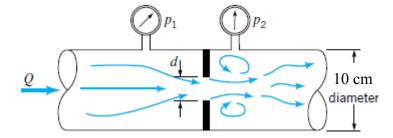
$$v_1 = \frac{8x10^{-3}}{\frac{\pi}{4}(50x10^{-3})^2} = 4.07 \ m/s,$$

$$v_2 = \frac{8x10^{-3}}{\frac{\pi}{4}(60x10^{-3})^2} = 2.83 \ m/s,$$

$$v_3 = \frac{8x10^{-3}}{\frac{\pi}{4}(100x10^{-3})^2} = 1.02 \ m/s$$

To get the pressures P_3 at sections 3

$$\frac{P_1}{w} + Z_1 + \frac{v_1^2}{2g} = \frac{P_3}{w} + Z_3 + \frac{v_3^2}{2g}$$


 $Z_1 = Z_3$ at the same horizontal level

$$\frac{P_1}{w} + \frac{v_1^2}{2g} = \frac{P_3}{w} + \frac{v_3^2}{2g}$$

$$\frac{P_3}{w} = \frac{P_1}{w} + \frac{v_1^2}{2g} - \frac{v_3^2}{2g}$$

$$\frac{P_3}{9800} = \frac{24.5x10^3}{9800} + \frac{(4.07)^2}{2x9.8} - \frac{(1.02)^2}{2x9.8}$$

C) What diameter orifice hole, d, is needed if under ideal conditions the flowrate through the orifice meter is to be 0.4 m³/sec of seawater with P_1 - $P_2 = 2.37$ kPa. The contraction coefficient is assumed to be 0.63.

