

College of Engineering & Technology

<u>R. N.:</u>

Department: Mechanical Engineering Ma Lecturer: Dr. Rola Afify Tin Course Code: ME362 Da

Marks: 20 Time: 4:00 – 5:00 Date: 6/5/2015

Name:

Answer the following questions: Question one (10 marks)

A) A 5 m high and 5 m wide rectangular plate blocks the end of a 4 m deep freshwater channel as shown in Figure. The plate is hinged about a horizontal axis along its upper edge through a point A and is restrained from opening by a fixed ridge at point B. Determine the force exerted on the plate by the ridge.

B) If the resultant pressure force on the circular gate shown in Figure is inclined 50° to the horizontal. Calculate the height of water in the tank 'h' and the magnitude of the resultant pressure force on the gate. Given that gate width = 0.5 m.

1/2

Question two (10 marks)

A) Compare between Rotational and Irrotational flows.

B) Water is flowing in the conduit shown in figure. If the flow rate Q is 8 lit/s and the diameters d_1 , d_2 and d_3 at sections 1, 2 and 3 are 50, 60 and 100 mm respectively, find the flow velocities v_1 , v_2 and v_3 . If the pressure P₁ at section 1 is 24.5 kPa, what is the pressure P₃ at sections 3?

C) What diameter orifice hole, *d*, is needed if under ideal conditions the flowrate through the orifice meter is to be 0.4 m³/sec of water with P_1 - P_2 = 2.37 kPa. The contraction coefficient is assumed to be 0.63.

