College of Engineering \& Technology

Department: Mechanical Engineering Marks: 20
Lecturer: Dr. Nola Afify
Course Code: ME362

Time: 10:30-12:10
Date: 22/4/2015

Name: Model Answer

Answer the following questions:

Question one (10 marks)

A) Gate AB is 5 m wide into the paper, hinged at A , and restrained by a stop at B . The water is at $20^{\circ} \mathrm{C}$. Compute (a) the force on stop B and (b) the reactions at A if the water depth $\mathrm{h}=9.5 \mathrm{~m}$.

$$
\begin{aligned}
& F_{R}=\left[P_{0}+\rho g\left(p+\frac{b}{2}\right)\right] a b \\
& =[0+1000 * 9.8 *(5.5+2)] * 5 * 4 \\
& =1.47 * 10^{6} \text { Newton } \\
& y_{p}=s+\frac{b}{2}+\frac{b^{2}}{12\left(5+\frac{b}{2}+\frac{p_{0}}{\rho g}\right)}=5.5+2+\frac{4^{2}}{12 *(5.5+2+0)} \\
& =7.6778 \mathrm{~m} \\
& \Sigma M_{A}=0=1.47 * 10^{6} * 2.1778-F_{B} * 4 \\
& \text { (a) } \therefore F_{B}=8.00342 * 10^{5} \text { Newton } \\
& \text { (b) } \quad \sum F_{x}=0 \quad X_{A}+F_{R}-F_{B}=0 \\
& X_{A}=-6.697 * 10^{5} \text { Newton } \\
& \Sigma F_{y}=0 \quad y_{A}=0
\end{aligned}
$$

R. N.:

B) Gate AB is a quarter circle 8 m wide into the paper and hinged at B. Find the force F just sufficient to keep the gate from opening. The gate is uniform and weighs 3000 N .

$$
\begin{aligned}
F_{H} & =\left(\rho g \frac{b}{2}\right) a b \\
& =(1000 * 9.8 * 5) * 8 * 10 \\
& =3.92 * 10^{6} \quad \text { Newton }
\end{aligned}
$$

$$
\begin{aligned}
F_{v} & =(\rho g h) a b \\
& =(1000 * 9.8 * 10) * 8 * 10=7.84 * 10^{6} \text { Newton } \\
W & =\rho \frac{1}{4} \pi r_{* a}^{2}=\frac{9800}{4} * \pi * 10^{2} * 8=2 * 10^{6} \pi \text { Newton }
\end{aligned}
$$

Find F to keep the gate from opening

$$
\begin{array}{rlrl}
F & =\sqrt{F_{x}^{2}+F_{y}^{2}} & F_{x} & =F_{H}=3.92 * 10^{6} \mathrm{~N} \\
& =4.265 * 10^{6} \mathrm{~N} & F_{y} & =F_{V}-w \\
\alpha & =\tan ^{-1} \frac{F_{y}}{F_{x}}=23.22^{\circ} & & =7.84 * 10^{6}-2 \pi * 10 \\
& =1.682 * 10^{6} \mathrm{~N}
\end{array}
$$

$$
l=R-R \operatorname{Cos} 45^{\circ}
$$

$$
\begin{aligned}
& \Sigma M_{B}=0 \\
& F R_{+}+w_{G}(R-R \cos 45)-F_{R} * R \sin \alpha=0 \\
& F=F_{R} \sin \alpha-w_{G}(1-\cos 45) \\
& =4.265 * 10^{6} \sin 23.22-3000(1-\cos 45) \\
& =1.68 * 10^{6} \text { Newton }
\end{aligned}
$$

Question two (10 marks)

A) Compare between Steady flow and Unsteady flow.

steady flow

unsteady flow

* Steady flow: pressure, velocity, flow rate (flow parameters) are constant with respect to time.
* Unsteady flow: any of the flow parameters change with time.
B) A pipe 4 cm diameter is connected in series to a pipe $8-\mathrm{cm}$ diameter. For a discharge of $6 \mathrm{lit} / \mathrm{s}$, of a liquid of sp. gr. 0.9 , the pressure before $\&$ after the sudden enlargement was 2 bar \& 2.04 bar. Calculate the head lost in the

$$
Q=6 * 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} \quad S G=0.9
$$

$$
\begin{array}{ll}
Q=6 * 10 \\
P_{1}=2 * 10^{5} \mathrm{~Pa} & P_{2}=2.04 * 10^{5} \mathrm{~Pa} . . .
\end{array}
$$

soln $Q=A_{1} V_{1}=A_{2} V_{2}$

$$
\begin{aligned}
Q & =A_{1} V_{1}=A_{2} V_{2} \\
6 * 10^{-3} & =\frac{\pi}{4}(0.04)^{2} V_{1}=\frac{\pi}{4}(0.08)^{2} V_{2}
\end{aligned}
$$

$$
V_{1}=4.77 \mathrm{~m} / \mathrm{s}
$$

$$
V_{2}=1.19 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& 1 \begin{array}{l}
8 \mathrm{~cm} \\
*(2)
\end{array} \\
& \mathrm{m} / \mathrm{s} \\
& \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

B.E. $\frac{p_{1}}{\rho g}+z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2}}{f g}+z_{2}+\frac{v_{2}^{2}}{2 g}+h_{\text {loss }}^{\text {same horizontal lend }}$

$$
h_{l \rightarrow 2}=\frac{P_{1}-P_{2}}{\rho g}+\frac{V_{1}^{2}-V_{2}^{2}}{2 g}=\frac{(2-2.04) * 10^{5}}{0.9 * 9800}+\frac{(4.77)^{2}-(1.1 g)^{2}}{2 * 9.8}
$$

$$
=\frac{-200}{441}+1.0886=0.635 \mathrm{~m} \text { of liquid }
$$

Horizontal

C) A lventuri meter is to be fitted to a $25-\mathrm{cm}$ diameter horizontal pipe, in which the maximum flow is $7200 \mathrm{lit} / \mathrm{min}$. of water and the pressure head at the inlet to the venture is $6-\mathrm{m}$ water. What is the minimum diameter of the throat so that there is no negative pressure in it? Assume ideal flow.
$d_{1}=25 * 10^{-2} \mathrm{~m}$ water

$$
Q=7200 \mathrm{lit} / \mathrm{min}
$$

$$
\begin{aligned}
& =7200 * \frac{10^{-3}}{60} \quad \mathrm{~m}^{3} / \mathrm{sec}=\frac{3}{25}=0.12 \mathrm{~m}^{3} / \mathrm{sec} \\
h_{1} & =\frac{P_{1}}{\rho g}=6 \mathrm{~m} \quad \text { ideal flow } \\
d_{2} & =? ? \quad \therefore h_{2}=\frac{P_{2}}{\rho g}=0
\end{aligned}
$$

sola

$$
\frac{p_{1}}{\rho g}+z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2} \text { not negative }}{\rho g}+z_{2}+\frac{v_{2}^{2}}{2 g}+h \cos _{1 \rightarrow 2}^{\operatorname{lor}^{0}}
$$

same horizontal level.

$$
\begin{aligned}
6+\frac{V_{1}^{2}}{2 g} & =0+\frac{V_{2}^{2}}{2 g} \\
V_{2}^{2} & =2 g * 6+V_{1}^{2} \\
\frac{Q^{2}}{A_{2}^{2}} & =2 * 9.8 * 6+\frac{(0.12)^{2}}{\left[\frac{\pi}{4}(0.25)^{2}\right]^{2}} \\
A_{2} & =\sqrt{\frac{(0.12)^{2}}{123.5762}}=0.01 \\
\frac{\pi}{4} d_{2}^{2} & =0.01 \quad \therefore d_{2}=0.117 \mathrm{~m}
\end{aligned}
$$

Another sol

$$
\begin{aligned}
& Q^{2}\left[\frac{1}{A_{2}^{2}}-\frac{1}{A_{1}^{2}}\right]
\end{aligned}=2 g\left[\frac{P_{1}-p_{2}}{\rho g}-h_{\text {not negative }}^{\substack{\text { ideal } \\
\text { ins }}}+z_{1}-z_{2}\right]
$$

$$
\begin{gathered}
\frac{1}{A_{2}^{2}}=\frac{2 * 9.8 * 6}{(0.12)^{2}}+\frac{1}{\left[\frac{\pi}{4}(0.25)^{2}\right]^{2}} \\
A_{2}=\frac{\pi}{4} d_{2}^{2}=\sqrt{\frac{1}{8581.678}}=0.01079 \\
d_{2}=0.117 \mathrm{~m}
\end{gathered}
$$

