College of Engineering \& Technology

Department: Mechanical Engineering
Marks: 15

Answer the following questions:

Question one (15 marks)

A) Define:

* Kinematic viscosity (v): is defined as the ratio of dynamic viscosity of
water to density

$$
\begin{aligned}
v & =\frac{\mu}{\rho}=\frac{P a \cdot S}{\mathrm{~kg} / \mathrm{m}^{3}}=\frac{\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s} \mathrm{~m}^{3}}{\mathrm{~s}^{2} \mathrm{~m}^{2} \mathrm{~kg}}=\left(\mathrm{m}^{2} / \mathrm{s}\right) \\
v & =0.01 \mathrm{~cm}^{2} / \mathrm{s} \\
& =0.01 \text { stoke } \quad \text { as Stoke }=\mathrm{cm}^{2} / \mathrm{s} \\
& =1 \text { centi stokes }
\end{aligned}
$$

- Vapour Pressure of a liquid:

It is the pressure at which a liquid start to boil at working temperature.
Boling temp increases by increasing pressure on liquid surface.
Boling temp decreases by decreasing pressure on liquid surface.
B) Compare between Newtonian and Non-Newtonian Fluids.

$$
\tau=\frac{F_{v i s}}{A}=\mu \frac{d u}{d y}
$$

as τ : Shear stress
$\frac{d u}{d y}: \quad$ rate of shear strain
If $\tau \alpha \frac{d u}{d y} \quad \therefore \mu=$ const. $\quad \therefore$ It is a Newtonian fluid
$\mu=$ const. \longrightarrow Newtonian fluid
$\mu=\uparrow \downarrow \longrightarrow$ Non Newtonian

C) A water bubble has a radius of 4 mm . Determine the pressure difference between the inside and outside the droplet. Surface tension of water is $\sigma=7.34 \times 10^{-2} \mathrm{~N} / \mathrm{m}$.

Half of droplet

$$
\begin{aligned}
& 2 \pi \mathrm{r} \sigma=\pi \mathrm{r}^{2} \Delta \mathrm{P} \\
& \Delta \mathrm{P}=\frac{2 \pi r \sigma}{\pi r^{2}}=\frac{2}{r} \sigma \quad \Delta \mathrm{P}=2 \times 7.34 \times 10^{-2} /\left(4 \times 10^{-3}\right)=36.7 \mathrm{~Pa}
\end{aligned}
$$

D) Two vertical parallel clean glass plates are spaced a distance of 2 mm apart. If the plates are placed in water $\left(\sigma=7.34 \times 10^{-2} \mathrm{~N} / \mathrm{m}\right)$, how high will the water rise between the plates due to capillary action?

