College of Engineering \& Technology

Marks: 15
Department: Mechanical Engineering

Time: 11:30-12:10
Course Code: ME362
Date: 20/3/2016

Answer the following questions:

Question one (7 marks)

A) Define:

* Kinematic viscosity (v): is defined as the ratio of dynamic viscosity of water to density

$$
\begin{aligned}
v & =\frac{\mu}{\rho}=\frac{P a \cdot S}{\mathrm{~kg} / \mathrm{m}^{3}}=\frac{\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s} \mathrm{~m}^{3}}{\mathrm{~s}^{2} \mathrm{~m}^{2} \mathrm{~kg}}=\left(\mathrm{m}^{2} / \mathrm{s}\right) \\
v & =0.01 \mathrm{~cm}^{2} / \mathrm{s} \\
& =0.01 \text { stoke } \quad \text { as Stoke }=\mathrm{cm}^{2} / \mathrm{s} \\
& =1 \text { centi stokes }
\end{aligned}
$$

- Bulk modulus of elasticity:

It's the rate at which the pressure changes with volumetric strain ($\Delta V / V$)

$$
\mathrm{K}=\frac{-\Delta P}{\Delta V / V}
$$

B) Prove that for the shown case the torque

$$
\begin{aligned}
& \mathrm{T}=\frac{2 \pi \mu \omega}{4 y} R^{4} \\
& \mathrm{dA}=2 \pi r d r \quad \& \quad \mathrm{u}=\omega \mathrm{r} \\
& \mathrm{dF}=\mu(2 \pi r d r) * \frac{\omega r}{y} \\
& \mathrm{~F}=\frac{\mu .2 \pi \omega}{y} \int_{0}^{R} r^{2} d r \\
& \mathrm{~F}=\frac{2 \pi \omega \mu}{3 y} R^{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{dT} & =\mathrm{r} . \mathrm{dF} \\
& =\mathrm{r} * \frac{\mu 2 \pi r d r \omega r}{y} \\
\int_{0}^{T} d T & =\frac{2 \pi \mu \omega}{y} \int_{0}^{R} r^{3} d r \\
\mathrm{~T} & =\frac{2 \pi \mu \omega}{4 y} R^{4}
\end{aligned}
$$

Question two (8 marks)

A) A soap bubble has a radius of 4 mm . Determine the pressure difference between the inside and outside the droplet. Surface tension of soap is $\sigma=0.15 \mathrm{~N} / \mathrm{m}$.

half of a soap bubble

$$
\begin{aligned}
4 \pi \mathrm{r} \sigma & =\pi \mathrm{r}^{2} \Delta \mathrm{P} \\
\Delta \mathrm{P} & =\frac{4}{r} \sigma
\end{aligned} \quad \Delta \mathrm{P}=2 \times 0.15 /\left(4 \times 10^{-3}\right)=75 \mathrm{~Pa}
$$

B) A clean glass tube having a 2 mm radius is placed in water $\left(\sigma=7.34 \times 10^{-2}\right.$ N / m), how high will the water rise in this tube due to capillary action?

```
\(\mathrm{W}=\sigma 2 \pi \mathrm{r} \cos \theta\)
\(\gamma \pi \mathrm{r}^{2} \mathrm{~h}=\sigma 2 \pi \mathrm{r} \cos \Theta\)
\(9800 \times \pi \times\left(2 \times 10^{-3}\right)^{2} \mathrm{~h}=7.34 \times 10^{-2} \times 2 \pi \times 2 \times 10^{-3} \times 1\)
\(\mathrm{h}=7.34 \times 10^{-2} /\left(9800 \times 10^{-3}\right)\)
\(\mathrm{h}=7.5 \times 10^{-3} \mathrm{~m}\)
\(\mathrm{h}=7.5 \mathrm{~mm}\)
```

