College of Engineering \& Technology
Department: Mechanical Engineering Marks: 20
Lecturer: Dr. Nola Afify
Time: 4:00-5:00
Course Code: ME362
Date: 6/5/2015
R. N.:

Answer the following questions:
Question one (10 marks)
A) Define:

- Fluid:

Fluid: is a substance which deforms continuously under the action of shearing forces, however small they are. This deformation is permanent even if the force is removed.

- Specific gravity:
* specific gravity: $\gamma=\frac{\text { sp. weight of fluid }}{\text { sp. weight of water }}$

$$
=\frac{\omega_{f}}{\omega_{w}}=\frac{\rho_{f} g}{\rho_{\omega} g}=\frac{\rho_{f}}{\rho_{\omega}}
$$

γ dimensionless \quad le le lour

$$
\text { for water } \gamma_{w}=1
$$

- Vapor pressure of liquid:
- vapour pressure of liquids (Pap.): It is the pressure at which a liquid starts to boil at working temperature.
Boiling temp. increases by increasing pressure on liq. Surface decreases \sim decreasing

p	0.3	0.5	1	4	10	atm
boiling temp	40	70	100	120	180	${ }^{\circ} \mathrm{C}$

B) A shaft 6.00 cm in diameter is being pushed axially through a bearing sleeve 6.02 cm in diameter and 40 cm long. The clearance, assumed uniform, is filled with oil Problems whose properties are $v=$ $0.003 \mathrm{~m}^{2} / \mathrm{s}$ and $\gamma=0.88$. Estimate the force required to pull the shaft at a steady velocity of $0.4 \mathrm{~m} / \mathrm{s}$.

$$
\begin{array}{rlrl}
d & =\sigma * 10^{-2} \mathrm{~m} & D & =6.02 * 10 \mathrm{~m} \\
l & =40 * 10^{-2} \mathrm{~m} & \nu & =\frac{\mu}{\rho} \\
\mu & =\rho \nu=0.88 * 1000 * 0.003= \\
u & =0.4 \mathrm{~m} / \mathrm{sec} & y & =\frac{D-d}{2}=1 \\
& \mu \Delta u \times 10^{\circ}
\end{array}
$$

$$
F_{v i s}=\mu A \frac{u}{y}
$$

$$
=2.64 * \pi d l * \frac{0.4}{0.01 * 10^{-2}}
$$

$$
=2.64 *\left(\pi * 6 * 10^{-2} * 40 * 10^{-2}\right)
$$

$$
=796.21 \text { Newton }
$$

Question two (10 marks)
A) State the relation between absolute, atmospheric and gage pressure.

* Absolute, atmospheric and gage pressure

Absolute pressure $=$ true pressure

$$
P_{a b s}=P_{\text {guage }}+P_{a t_{m}}
$$

B) The inverted differential manometer have an oil of specific gravity 0.8 connected to two different pipes carrying water under pressure. Determine the pressure in the pipe B. The pressure in pipe A is 2.0 meters of water.

$$
\begin{gathered}
\text { wall. } P_{I}=P_{\text {II }} \\
P_{A}-\rho_{\omega} g * 0.3=P_{B}-\rho_{\omega} g * 0.1 \\
\quad-0.8 \rho_{\omega} * g * 0.15 \\
P_{B}=P_{A}+\rho_{\omega} g[0.1+0.8 * 0.15-0.3] \\
= \\
=\rho_{\omega} g[2+0.1+0.12-0.3] \\
= \\
=9800 * 1.92 \\
= \\
\end{gathered}
$$

