College of Engineering \& Technology

Department: Mechanical Engineering
Lecturer: Dr. Nola Afify
Marks: 10
Course Code: ME362
Time: 11:30-12:10
Date: 25/3/2015

Name: Model Answer
R. N.:

Answer the following questions:

Question one (5 marks)

A) Discuss the relation between Viscosity and Temperature for a certain fluid. * Relation between viscosity and temperature for a certain fluid viscosity
gases
B) Choose the correct answer:

An oil has a kinematic viscosity of $1.25 * 10-4 \mathrm{~m}^{2} / \mathrm{s}$ and a specific gravity of 0.80 . What is its dynamic (absolute) viscosity in $\mathrm{kg} /(\mathrm{m} . \mathrm{s})$?

(b) the answer

C) The shaft turning inside a stationary journal as shown, with a rotating speed 20 rps the torque is

$$
T=0.036 \mathrm{~N} . \mathrm{m} \quad \mu=? ?
$$

$$
\begin{aligned}
& 0.0036 \text { Nom. Estimate the viscosity of oil. } \\
& \left.\begin{array}{l}
d=40 * 10^{-3} \mathrm{~m} \\
D=41 * 10^{-3} \mathrm{~m}
\end{array}\right\} y=\frac{D-d}{2}=0.5 \\
& L=8 * 10^{-2} \mathrm{~m} \quad \omega=2 \pi * 20=40 \pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } 0.08 \text {, (b), } 0.10 \text {, (c) } 0.125 \text {, (d) } 1.0, \text {, (e) } 1.25 \\
& \nu=\frac{\mu}{\rho} \\
& \gamma=\frac{\rho}{\rho_{\omega}} \\
& \rho=0.8 * 1000 \\
& =800 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=2 \rho=1.25 * 10^{-4} * 800 \\
& =0.1 \mathrm{~kg} / \mathrm{m} . \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& T= F * r=\mu A \frac{d u}{d r} * r \\
& 0.036=\mu *\left(\pi * 40 * 10^{-3} * 8 * 10^{-2}\right) * \frac{40 \pi * \frac{40}{2} * 10^{-3}}{0.5 * 10^{-3}} \\
& 0.036=\mu * 50.53 \\
& \mu=7.124 * 10^{-4} \mathrm{~Pa} . \mathrm{S} .
\end{aligned}
$$

Question two (5 marks)
A) Prove that the pressure changes in the vertical direction.

$$
z_{1}+\underbrace{F_{1}=P_{1} A}_{F_{2}=P_{2} A}
$$

$$
\begin{gathered}
\rho=\frac{m}{V} \quad \therefore \quad m=\rho V=\rho A h \\
\Sigma F=0 \quad \text { in static } \\
F_{1}+m g-F_{2}=0 \\
P_{1} A+\rho A\left(Z_{1}-z_{2}\right) g-P_{2} A=0 \quad \div A \\
P_{1}+\rho h g-P_{2}=0 \\
P_{2}-P_{1}=\rho g h \quad o r \quad P_{2}-P_{1}=\omega h
\end{gathered}
$$

B) A tank is constructed of a series of cylinders having diameters of $0.30,0.25$, and 0.15 m as shown in figure. The tank contains oil (sp.gr. $=0.8$), water, and glycerin (sp.gr. $=$ 1.26). A mercury manometer is attached to bottom. Calculate the manometer reading, h .

