Sheet 4

Bermoulli Thearem \& Continuity Equation

1. Water flows from a garden hose nozzle with a velocity of $15 \mathrm{~m} / \mathrm{s}$. What is the maximum height that it can reach above the nozzle?

Figure 1
2. Water flowing from the 20 mm diameter outlet as shown in figure 2 . Determine the flow rate.

Figure 2
3. Water flows without viscous effects from the nozzle shown in figure 3. Determine the flow rate and the height, h , to which the water can flow.

Figure 3
4. Water flows steadily through the large tanks as shown in figure 4.

Determine the water depth h_{A}.

Figure 4
5. What pressure P_{1} is needed to produce a flow rate of $0.00254 \mathrm{~m}^{3} / \mathrm{s}$ from the tank shown in figure 5?

Figure 5
6. The vent on the tank shown in figure 6 is closed and the tank is pressurized to increase the flow rate. What pressure P_{1} is needed to produce twice the flow rate of that when the vent is open?

Figure 6
7. A large open tank contains a layer of oil floating on water as shown in figure 7. The flow is inviscid. Determine:
a. The height, h , to which the water will rise.
b. The water velocity in the pipe.
c. The pressure in the horizantal pipe.

Figure 7

8. Water flows from the faucet on the first floor of building shown in figure 8 with a maximum velocity of $6.1 \mathrm{~m} / \mathrm{s}$. For steady flow, determine the maximum water velocity from the basement faucet and from the faucet on the second floor. Assume each floor is 3.6 m tall.

Figure 8
9. Streams of water from two tanks impinge upon each other as shown in figure 9. If viscous effects are negligible and point (A) is a stagnation point, determine the height (h).

Figure 9
10. Water flows through the branching pipe shown in figure 10. If the viscous effects are negligible, determine the pressure at section (2) and the pressure at section (3).

