College of Engineering and Technology Mechanical Engineering Department Hydraulics (ME 362)

Sheet 5

Flow Measurements

1. Water flows through a Venturi meter as shown in figure (1). The Venturi meter has a 10.16 cm diameter throat and is installed in a horizontal 30.48 cm diameter pipeline. Determine the discharge coefficient of the Venturi meter if the discharge in determined to be $0.06 \mathrm{~m}^{3} / \mathrm{s}$.

Figure 1

2. A Venturi meter having a throat diameter of 150 mm is installed in a horizontal 300 mm diameter water main, as shown in figure (2). The coefficient of discharge of Venturi meter is 0.982 . Determine the difference in level of the mercury columns of the differential manometer attached to the Venturi meter if the discharge is 0.142 $\mathrm{m}^{3} / \mathrm{s}$.

Figure 2
3. Kerosene $(\mathrm{SG}=0.85)$ flows through the venturi meter shown in figure (3) with flowrates between 0.005 and $0.050 \mathrm{~m}^{3} / \mathrm{s}$. determine the range in pressure difference, $p_{1}-p_{2}$ needed to measure these flowrates.

Figure 3
4. Oil flows through a pipe as shown in figure (4). The coefficient of discharge for the orifice is 0.63 . Determine the discharge of oil in the pipe.

Figure 4
5. Water flows through the orifice meter shown in figure (5) at a rate of $0.0028 \mathrm{~m}^{3} / \mathrm{s}$. If $d=3.048 \mathrm{~cm}$, determine the value h.

Figure 5
6. Water flows from a large tank through an orifice and discharges to the atmosphere, as shown in figure (6). The coefficient of velocity and contraction is 0.96 and 0.62 , respectively. Determine the diameter and actual velocity in the jet. Also determine discharge from the orifice.

Figure 6
7. Determine the flowrate through the submerged orifice, shown in figure (7) if the discharge coefficient is 0.68 .

Figure 7

