College of Engineering and Technology Mechanical Engineering Department Hydraulics (ME 362)

Sheet 6

Flow in Pipes

1. Water flow in constant diameter pipe with the following conditions measured:
At section (a): $p_{\mathrm{a}}=223.39 \mathrm{KPa}$ and $z_{\mathrm{a}}=17.3 \mathrm{~m}$.
At section (b): $p_{\mathrm{b}}=204.774 \mathrm{KPa}$ and $z_{\mathrm{a}}=20.8 \mathrm{~m}$.
Is the flow from (a) to (b) or from (b) to (a)? Explain.

Figure 1
2. Repeat Problem (1) if the specific gravity of the fluid is 0.5 .

Figure 2
3. Oil (specific weight $=8900 \mathrm{~N} / \mathrm{m} 3$, viscosity $=0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m} 2$) flows through a horizontal 23 mm diameter tube as shown in figure 3. A differential tube manometer is used to measure the pressure drop along the tube. Determine the range of values for h for laminar flow.

Figure 3
4. During a heavy rainstorm, water from a parking lot completely fills an 45.72 cm diameter, smooth, concrete storm sewer. If the flow rate is $0.2831 \mathrm{~m}^{3} / \mathrm{s}$, determine the pressure drop in a 30.48 m horizontal section of the pipe. Repeat the problem if there is a 60.96 cm change in elevation of the pipe per 30.48 m of its length.
5. Water flows at a rate of $0.01416 \mathrm{~m}^{3} / \mathrm{s}$ from tank A to tank Through a horizontal 7.62 cm diameter cast iron pipe of length 60.96 m . if minor losses are neglected, determine the difference in elevation of the free surfaces of the tanks.

Figure 4
6. The pump shown in figure 5 adds 25 kW to the water and causes a flowrate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. Determine the flowrate expected if the pump is removed from the system. Assume $f=0.016$ for both cases and neglect minor losses.

Figure 5

