

College of Engineering & Technology Mechanical Engineering Department Hydraulic and Pneumatic Systems (ME464)

SHEET 3

1- (Example 6-1)

A pump supplies oil at 77 in³/s to a 2-in diameter double acting hydraulic cylinder. If the load is 1000 lb (extending and retracting) and the rod diameter is 1 in, find

- a. The hydraulic pressure during the extending stroke
- b. The piston velocity during the extending stroke
- c. The cylinder power during the extending stroke
- d. The piston velocity during the retraction stroke
- e. The cylinder power during the retraction stroke

2- (Example 6-2)

Find the cylinder force F required to move a 6000-lb weight W along a horizontal surface at a constant velocity. The coefficient of friction (CF) between the weight and horizontal support surface equals 0.14

3- (Example 6-3)

Find the cylinder force required to lift the 6000-ib weight W of question 2 along the direction which is 30° from the horizontal, as shown in figure 1. the weight is moved at constant velocity.

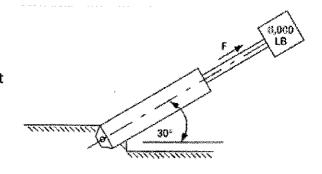


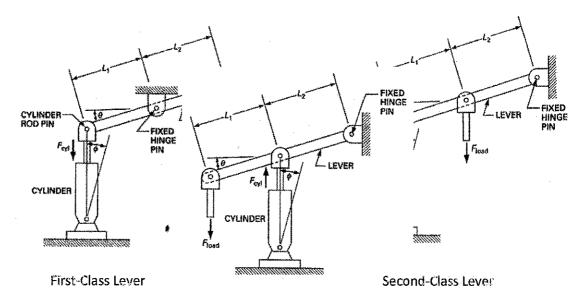
Figure 1

4- (Example 6-4)

A 6000-lb weight of the question 2 is to be lifted upward in a vertical direction. Find the cylinder force required to

- a. Move the weight at a constant velocity of 8 ft/s
- b. Accelerate the weight from zero velocity to a velocity of 8 ft/s in 0.50 s

5- (Example 6-5)


For the first, second and third-class lever systems of figure 2, the following date are given:

$$L_1 = L_2 = 10$$
 in

$$\phi = 0^0$$

Find the cylinder force required to overcome the load force for the

- a. First-class lever
- b. Second-class lever
- c. Third-class lever

Third-Class Lever