Fluid Kinematics

( Hydrodynamics )

Kinematics describes motion in terms of displacements, velocities, and accelerations

regardless to the forces which are associated with these variables.

* Definitions :

* Streamline : is a smooth imaginary curve represents

one particle in the flow. The tangent of this line gives the

direction of velocity at any point.

e Streamlines can never intersect.

e They can never have sudden change in direction .

Intersection or sudden change in direction means that there is a point where the velocity

vector has two directions in the same time which is impossible .

* Stream tube : is a tube formed of an infinite number

of streamlines which are drawn passing through a closed
curve in the flow.

- No flow can go in or out the sides of this tube.

* Types of flow :

1 — Ideal and real flow
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Ideal flow Real flow

* |deal flow: means frictionless flow, no energy is lost, viscosity is considered zero.

* Real flow: viscosity can't be neglected, there is friction. Friction causes some of the

mechanical energy to be converted into heat energy and can't be restored.



2 — Steady and unsteady flow (with respect to time) (from time to time)
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steady flow unsteady flow

* Steady flow: pressure, velocity, flow rate (flow parameters) are constant with respect to

time.

* Unsteady flow: any of the flow parameters change with time.

3 — Uniform and Non-uniform flow (from point to point)
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Uniform flow Non-uniform flow

* Uniform flow: the velocity at a given instant is the same in magnitude and direction at

every point in the flow.

* Non-uniform flow: the velocity at a given instant changes from point to point.




4 — one , two and three-dimensional flow :

* One-dimensional flow

A 4

Flow variables depend on one dimension only. >

EX.: Ideal flow in a pipe of stepping cross-

|

section.

1
* Two-dimensional flow
Flow variables depend on two dimensions.
EX.: real flow in the same pipe. N

* Three-dimensional flow

N\

Flow variables depends on three dimensions

5 — rotational & irrotational flow :
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Fluid particles not rotating
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6 - Laminar, Transient and Turbulent flow

1%0
I I dye Re=p7

< O ) Laminar flow Re < 2000
( 0 The particle moves in parallel layers.

Transient flow 2000 < Re < 4000
water ?\,\,’w\,—fg The dye filament begins to oscillate.
Turbulent flow Re > 4000
MWNM The dye color is diffused over the

whole cross-section.
)

Outlet valve
Dye filﬁnt

Equations of motion :

1 - Continuity equation.

2 — Bernoulli's equation.



1 — Continuity equation:

A
° Aj_‘ ° o o
m —rc= m, > m,
As
Mass of fluid Mass of fluid
entering per unittime = leaving per unit time
m, =m, = m, = const mass flow rate

PAV, = p, AN, = p; AV,

* For liquids ( incompressible fluid ) o, = p, = p, = const.

AV, =AV, =AV,=Q discharge (volume flow rate )

Q2

o (1>

Qs
Q:1=Q2+Q3



EX.:

Assuming the water moving in the pipe is an
ideal fluid, relative to its speed in the 1”
diameter pipe, how fast is the water going in
the 1/2” pipe?

a)2v, b)4v, c) 1/2 vi ¢) 1/4 v,

Solution

Using the continuity equation
A-Vy=AY,
2
2
—> Vv, = A A :(1.1] -V, =4y,

If pipe 1 diameter = 50mm, mean velocity 2m/s, pipe 2 diameter
40mm takes 30% of total discharge and pipe 3 diameter = 60mm.

What are the values of discharge and mean velocity in each pipe?
Q2

Solution
Q1

AV, = %(50x10‘3)2x2: 3.93x10° m®/sec

Q,=0.3x Q; = 1.178x10° m®/sec o
Q2=AsV;

1.178x10°= %(40x103)2x vV,

V, = 0.9375m/s

Q1=Q2+Q3

3.93x10°= 1.178x10° + Qg -~ Q3 = 2.752x10° m®/sec
Qs =A3zV3
2.752x10°= %(60x10‘3)2xv3 - V3 = 0.9733 m/sec



2 — Bernoulli's equation ( energy equation )

N A+ 5A
dS V4oV
" prop
S H
Vv
P
streamline 7+ 87
Z
Horizontal datum

2
E=Z +£+V—= const
PY 29
E : total energy per unit weight (m)
Z : potential energy per unit weight (m)

P
E . pressure energy per unit weight (m)

2
Ve . kinetic energy ( velocity energy ) per unit weight (m)

* For ideal flow :




* For Real flow 1

Ei1—Nioss1102= Eo

El = EZ + h loss 1 to 2

) 2
fi+zl+%L:£2+Zz+!L+hmm2 2
o0 9 M
atm.

P i Ve B
_A+ZA+2A %-FZB"‘ 2 +h|osslt02
et g J

=0 atm

Axr=Ag

. VA:VB A
Pa

E = (ZB - ZA)+ hlossltoz

Ei+ hp =E;+ hr +hiessit02

Pam =0
Same dia . . same vel.

vel .inside tank =0

Point on datum Z =0

Ideal flow hjgss =0

Za

2
i+ZA+V =1 + B+V_B+hlossAtoB
et g 29

=0 =0 =0

vel. Inside  atm.  dotum
Tank
Pa

2
_+ZA :\/_B
9 29

+ hlossAtoB



da=1cm dg=5cm
hA—Zm hB =5m
V2

—A =5m

24

Determine:

1 — The velocity at B

2 —Direction of flow

Solution take g =10 m/s*

Vs
29
C.EfromAtoB

T

Vg = 10_ 0.4m/sec
25

V2
E,=h,+Z,+2=2+1+5=8m

29
V.2

Eg =hg +Zp +-8 =542+
29
E,>E;

.". The flow from A to B

Noo =E,—Eg

loss

=8-7.008
=0.992 =1Im

Im

2m

— =5m V, =+42*10*5 =10m/s
AaVa=AgVsg

S0 10=767 v,




The diagram shows a pump
delivering water through as
pipe 30 mm bore to a tank. Find
the pressure at point (1) when
the flow rate is 0.0014 m?®/s.
The density of water is 1000

kg/m>. The loss of pressure due

to friction is 50 kPa (h,, =5m of

water).

Solution

d=0.03m Q=0.0014 m*/s he.. =5m of water
P =7 0 =1000 kg/m®

Q=AV,

0.0014 = %(0.03)2v1

V, =198 m/s
2 2
i+zl+VL=i+Zz +V_2+hlosslt02
ol 20 o9 29
2
P B8 0 o5, 0 s
2
R _ 5,5 (199
9800 2*10
2
Hzgmm*BO—GB&
2*10

P, = 293.29kPa



At point (1), the pressure is atmospheric (p; = po), or the gage pressure is
zero, and the fluid is almost at rest (V; = 0). At point (2), the exit pressure is
also atmospheric (p, = po), and the fluid moves at a velocity V. By using
point (2) as the datum where z, = 0 and the elevation of point (1) is h, the

above relation can be reduced to

P, V2 P v/
L 4+Z +L =247+
A 20 M 29
2
£+h+£=£+0+v—2
A 29 9 29
2gh =V;

Hence we can formulate the velocity V to be V, = \/ﬁ

Notice that we can also obtain the similar relation by using the relation between
point (3) and point (4). The pressure and the velocity for point (4) is similar to
point (2). However, the pressure for point (3) is the hydrostatic pressure,
I.e. ps =po+ pg(h - ¢) and the velocity is also zero due to an assumption of a

large tank. Hence, the relation becomes

P, vV P V2
S +Z 4=,
9 29 9 29



2
h—I+I+£=£+O+V—4

29 9 29
2gh =V
Hence we can formulate the velocity V to be V, =/2gh

If we applied Bernoulli's equation between points (1) & (5)

2 P V2
i+Zl+VL=—5+Z5 >
~ 29 M 29

2
£+h+i=i—H +V—5
et 29 P9 29

V,=+2g(h+H)

where (h + H) is the vertical distance from point (1) to point (5).

The velocity V is only dependent on the depth of the centre of the nozzle from
the free surface h. If the edge of the nozzle is sharp, as illustrated in Figure,
flow contraction will be occurred to the flow. This phenomenon is known as
vena contracta, which is a result of the inability for the fluid to turn at the sharp

corner 90°. This effect causes losses to the flow.



For a nozzle located at the side wall of the tank as in Figure (b), we can also

form a similar relation for the Bernoulli equation, i.e.

V,=2g(h-d/2) V,=2gh V,=,2g(h+d/2)

For a nozzle having a small diameter (d v h), then we can conclude that

Vi =V, =V;=V=,2gh
According to the Bernoulli equation, the velocity of a fluid flowing through a
hole in the side of an open tank or
reservoir is proportional to the square root
of the depth of fluid above the hole. The
velocity of a jet of water from an open pop
bottle containing four holes is clearly
related to the depth of water above the
hole. The greater the depth, the higher the

velocity. Similar behavior can be seen as
water flows at a very high velocity from the reservoir behind Glenn Canyon dam

in Colorado.

Example:




Example:




P =P

R -p.,9(z,-2,) - p,9l - p,0h =P, - p, 9l — p,0h

P =P, =p,9(z, —2)) + p, 90 + p, 91 - p, 9l — p, G0
R -P,=p,9(z, -2,)+ p,9h - p,gh

I:)]. - PZ = pwg(zz - Zl)+pwgh(1_&J

w

Pl_PZ
=(z,-2,)+h(1-SG,) -mmemmmmee-- 1
oy~ ( ) €

From (1) & (2) in (3)

v;—(
(z,-2,)+h(1-SG,)=12, -2+

Vv,

1

|_\

|
7\
U\U

- N
N—
o
L 1

2g(1-5G,)




Application of Bernoulli's equation:

Simple Flowrate Measurement

The simplest technique to determine the
steady flow rate of a liquid is to measure the
amount of liquid collected over a period of

time. For example, one could collect the

liquid in a container of known size. If the

time needed to fill the container is recorded, then the flow rate can be easily

determined from the equation Q = Volume / Time

Measurements of flow rate:

A change in the cross-section area of a stream tube has been seen to produce an
accelerated flow (change in flow velocity) and fall of pressure. By an excellent
meter, flow may be calculated from pressure measurements, such as:

1. Venturi meter.

2. Orifice meter.

1. Venturi meter:

The converging tube is an efficient device for converting pressure head
to velocity head, while the diverging tube converts velocity head to pressure
head. Both of them may be combined to form a Venturi tube. As shown in Fig.,
it consists of a tube with a constricted throat (smooth entrance cone of angle
about 20° as converging part), which produces an increase in velocity
accompanied by a reduction in pressure, followed by a gradually diverging
portion of 5° to 7° cone angle in which the velocity is transformed back into

pressure with slight friction loss.
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Inlet Throat

As there is a definite relation between the pressure differential and the rate of
flow, the tube may be made to serve as a metering device known as a “Venturi
Meter”. The pressure difference between the inlet section (1) and the throat
section (2) is usually measured using differential manometer. Writing the

Bernoulli equation between sections (1) (inlet) and (2) (throat), we have:

V2 P 2
Ltz +L =247, +2+h,
~ 29 29 o

PP
V22 _V12 = 29[(; _Ei) + (Zl - 22) - hlossl_,2 :|

Continuity Eq.:

Q Q
AV,=AV,=Q then, V,=—~ & V,=—
AV, =Q

Then, Bernoulli equation between sections (1) (inlet) and (2) (throat), can be

rewritten as:

1 1 P-P
2

2 72 _
Q2 = (A?l_A;\Q jzg|:Pl P2 + (Zl - 22) - hlossbz:|
2

Q = \/( A?lz_Aizz )Zg{ Pl;gpz + (Zl - Zz) - hlosslﬁz :|




AA,

Q: \/Zg(H hloss ) or Q C AlAZ
-A;

2

VA -

Where: H = [ h-P +2,— zzj and Cgq is adischarge coefficient
~

Example:
Find the discharge rate of water through the venturi

tube of discharge coefficient C4 = 0.988 that shown in
Figure, if D: =800 mm, Dz =400 mm, Az =2 m, and
Rm =150 mmHg.. Use [ pw = 1000kg/m® , puy =
13600kg/m*, and g = 9.807m/sec?]

AA,
=C, ————1/2g
Q T

T

A =7 DI=05m" & A, =%D22 —0.125m”

P -P,
~9

H = + Az

For U_tube manometer P, =P,
Pl +pwg(Rm + L+AZ) = PZ +png+pngm
P:L - I:)2 = png+pngm _pngm —prL—prAZ

P P ,Ong prRm_prAZ

w

Pl - PZ +prAZ = pngm(p_m_lJ

LS P LN

Then H =0.15 | 30999 _1|_1 ggm
1000g

. AA
Now; Q=C, ———/20H
VA -A

Q-0988x—22X0125 e 807x1.80 = 0.777 m? /sec

J(0.5) —(0.125)’




Unless specific information is available for a given venturi tube, we can
assume the value of Cd is about 0.99 for large tubes and about 0.97 or 0.98 for
small ones, provided the flow is such as to give Reynolds numbers greater than
about 10°.

So, the dimensional analysis of a venturi tube indicates that the coefficient of

discharge Cd should be a function of Reynolds number and of the geometric

parameters D; and D,. Values of venturi tube coefficients are shown in figure.

‘I.GOi T ~T T T T I T
200in X 100 in |
8in X 4in |
|
i
0.95 — !
|
Co |

0.90
0.85 | | | | | | | | . | =} | I
10° 2 5 104 2 5 10° 2 5 108 2 5 10
D,V
Reynolds number at throat, R = zpj iz

2. Orifice meter:

We can use an orifice in a pipeline as a meter in the same manner as the venturi
tube. The orifice meter consists of a concentric sharp edged circular hole in a

thin plate which is clamped between two flanges in a pipe line.



Thin-plate orifice in a pipe. (Scale distorted: the region of eddying turbulence will
usually extend 4D, to 8D, downstream, depending on the Reynolds number.)

The flow characteristics of the orifice is similar to the flow in a venturi-meter
except that the minimum section of the stream tube A, occurs down stream from
the orifice (section 2) owing to the formation of vena contraction. The ratio

between the minimum area A, and the area of orifice A, is known as coefficient
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of contraction Cc, i.e., C, :%

Writing the Bernoulli equation between sections (1) and (2) (downstream), we

P, V
have: X +z +-*

ey

) P
For the same horizontal level —++ 21 =—2 4
29 p9 29

2

29

2

_ 2 2
=—=+1, +—2 + hIOSSM

A9

2

1

A

P,

V2
—2+h

loss, ,,

Continuity Eq.: AV, =AV,=Q i.e,V, :vz%: CCAOVZ

- \/29(

P-P,

A9

2
+ VL - hloss j
29 152

P-P, V/
V,=C, [2g| +—2+-1|=C,./20H
2 v\/ g( pg 29) v g

A
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Where H = (
M~ 29

J and C, is a velocity coefficient.

Then, Q= AV, =C,AC,+/2gH =C,A /2gH
Where, C, =C . xC, ------mmmmmmm- discharge coefficient.

1 _
Orifice in a Tank V ] - :

for an orifice in a tank, the AH

ideal energy equation s '_ S N/
written between 1 and 2, Thus: _ "
P, V2 P V2 | L hs

I J L L -' 12 )
S T2 _ N e
+h1+£=h3+0+v—2
2 29

=V, =4/2g(h, —h,) = \2gAH
Where, v, is the ideal velocity at the vena contract
& AH is the net head differential.

Hence Q will be:  Q=C,A /29AH

Example:

Water flows through a 60-mm-diameter sharp-edged orifice which connects two adjacent

tanks. The head on one side of the orifice is 2.5 m and 0.5 m on the other. Given C_ = 0.62

and C, =0.95, calculate the flow rate. A = % D? :%(0.06)2 =2.827x10°m?

Q=C,A+20AH & C,=C,xC,=0.62x0.95=0.589

Then Q =0.589x2.827x107° x,/2x9.807 x (2.5 0.5)
=0.0104289m*® /s =10.43L /s



