

College of Engineering \& Technology

Department: Mechanical Engineering
Lecturer: Dr. Kola Afify
Marks: 15
Course Code: ME356
Time: 3.00-4.00
Date: 11/11/2015
Name: Model. Answer

R.N.:

Answer the following questions:

Question one (6 marks)

A shaft 40 mm diameter is made from steel and the maximum allowable shear stress for the material is 50 MPa . Calculate the maximum torque that can be safely transmitted by the shaft. Take $\mathrm{G}=90 \mathrm{GPa}$.
$d=40 \mathrm{~mm}$
$C_{\text {max }}=50 \mathrm{MPa}$

$$
T_{\max }=\text { ?? }
$$

sols

$$
\begin{aligned}
& \begin{aligned}
& C=\frac{T r}{J}=\frac{T_{\text {max }} * 20}{\frac{\pi}{32}(40)^{4}}=C_{\text {max }} \\
& \begin{aligned}
50 & =\frac{20 T_{\text {max }}}{251327.4} \\
& =628.3 \mathrm{~N} \cdot \mathrm{~m} \\
& =200 \mathrm{Nax} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned} \\
& \begin{aligned}
\text { Question two (9 marks) }
\end{aligned} \\
& \text { Determine the maximum stress at section asa shown } \\
& \text { in Figure. }
\end{aligned}
\end{aligned}
$$

Torsion

$$
\begin{aligned}
\tau & =\frac{\operatorname{Tr}}{J}=\frac{1500 * 400 * 20}{\frac{\pi}{32}(40)^{4}} \\
& =47.75 \mathrm{MPa}
\end{aligned}
$$

Bending

$$
\begin{aligned}
\sigma_{b} & =\frac{M_{y}}{I}=\frac{1500 * 200 * 20}{\frac{\pi}{64}(40)^{4}} \\
& =47.75 \mathrm{MPa}
\end{aligned}
$$

The stresses are from different Kinds

$$
\begin{aligned}
\sigma_{\max } & =\frac{\sigma_{b}}{2}+\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+z^{2}} \\
& =\frac{47.75}{2}+\sqrt{\left(\frac{47.75}{2}\right)^{2}+(47.75)^{2}} \\
& =77.26 \mathrm{MPa} \\
\tau_{\max } & =\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+\tau^{2}} \\
& =\sqrt{\left(\frac{47.75}{2}\right)^{2}+(47.75)^{2}} \\
& =53.386 \mathrm{MPa}
\end{aligned}
$$

