College of Engineering \& Technology

Department: Mechanical Engineering
Lecturer: Dr. Nola Afify
Course Code: ME416

Marks: 20
Time: 12:30-2:00
Date: 11/11/2015

Name: Model Answer

Answer the following questions:

Question one (10 marks)

A) Define:
i- Density : mass per unit volume $\rho=\frac{m}{V}$
For water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$

ii- Specific weight : weight per unit volume

$\mathrm{w}=\frac{\text { weight }}{\text { volume }}=\frac{\mathrm{m}^{*} \mathrm{~g}}{\mathrm{~V}}=\rho \mathrm{g}$
For water $\quad \mathrm{w}=1000 * 9.8 \mathrm{~N} / \mathrm{m}^{3}$
iii- Kinematic viscosity (v) : is defined as the ratio of dynamic viscosity of water to density

$$
v=\frac{\mu}{\rho}=\frac{P a \cdot S}{\mathrm{~kg} / \mathrm{m}^{3}}=\frac{\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s} \mathrm{~m}^{3}}{\mathrm{~s}^{2} \mathrm{~m}^{2} \mathrm{~kg}}=\left(\mathrm{m}^{2} / \mathrm{s}\right)
$$

$v=0.01 \mathrm{~cm}^{2} / \mathrm{s}$ for water
B) A 25 mm diameter shaft is pulled through a cylindrical bearing as shown in Figure. The lubricant that fills the 0.3 mm gap between the shaft and bearing is oil having a kinematic viscosity of $8 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ and a specific gravity of 0.91 . Determine the force P required to pull the shaft at a velocity of $3 \mathrm{~m} / \mathrm{s}$. Assume the velocity distribution in the gap is linear.

$$
d=25 * 10^{-3} \mathrm{~m}
$$

$$
y=0.3 * 10^{-3} \mathrm{~m}
$$

$$
\nu=8 * 10^{-4} \mathrm{~m}^{2} / \mathrm{s}=\frac{\mu}{\rho}
$$

$$
\gamma=0.91=\frac{\rho_{f}}{\rho_{w}}
$$

$$
\begin{aligned}
F_{\text {vis }}= & \mu A \frac{F_{u}}{y} 0.5 \mathrm{~m} \\
P= & {\left[8 * 10^{-4} * 0.91 * 1000\right] * } \\
& \left(\pi * 25 * 10^{-3} * 0.5\right) * \frac{3}{0.3 * 10^{3}}
\end{aligned}
$$

$$
P=91 \pi
$$

$$
=285.88
$$

$\mu=2 \rho=2 * \gamma * \rho_{\omega}$

Question two (10 marks)

A) Define Streamline:

A Streamline is a curve that is everywhere tangent to it at any instant represents the instantaneous local velocity vector.

B) Write the general form equation for:

 i- Streamline in 3D:
$\tan \theta=\frac{d y}{d x}=\frac{v}{u}$
$\frac{u}{d x}=\frac{v}{d y}$
in -general-for3-D
$\frac{u}{d x}=\frac{v}{d y}=\frac{w}{d z}$

ii- Velocity in vector form in 3D:

$\vec{V}=u \vec{i}+v \vec{j}+w \vec{k}$
Where:
$\mathrm{i}, \mathrm{j}, \mathrm{k}$ are the unit vectors in $+\mathrm{ve} \mathrm{x}, \mathrm{y}, \mathrm{z}$ directions

iii- Acceleration in 2D:

$a=\sqrt{a^{2}{ }_{x}}+a^{2}{ }_{y} \& \quad \tan \alpha=\frac{a_{y}}{a_{x}}$
C) If $\vec{V}=3 x \vec{i}+2 y \vec{j}-2 z \vec{k}$, determine:

i- Velocity at origin:

At origin $(0,0,0) \quad \therefore \vec{V}=0 \quad \therefore v=0$

ii- Velocity at x-axis:

At x -axis $(\mathrm{x}, 0,0) \quad \therefore \vec{V}=3 x \vec{i} \quad \therefore v=3 x$ in x -direction

iii- Acceleration in vector form:

If $\vec{V}=3 x \vec{i}+2 y \vec{j}-2 z \vec{k}$ and the general form of the velocity vector is
$\vec{V}=u \vec{i}+v \vec{j}+w \vec{k}$ then $u=3 x, v=2 y$, and $w=-2 z$
Then the acceleration components will be

$$
\begin{array}{ccc}
a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}, a_{y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}, \text { and } a_{z}=u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z} \\
a_{x}=9 x, & a_{y}=4 y, \quad \text { and } & a_{z}=4 z
\end{array}
$$

Then the acceleration vector will be

$$
\vec{a}=9 x \vec{i}+4 y \vec{j}+4 z \vec{k}
$$

