

COLLEGE OF ENGINEERING & TECHNOLOGY

Department: Mechanical Engineering

Lecturer : Staff

Course : Machine design

Course Code: ME 454

Date : 08/ 06/2016

Marks: 40

Time: 12.00:14.00

FINAL EXAMINATION PAPER

ANSWER 4 QUESTIONS ONLY

QUESTION (1) [10 MARKS]

Fig. 1 shows a schematic drawing of a countershaft that supports two V-belt pulleys. The belt tension on the loose side of pulley A is 20 percent of the tension on the tight side. The shaft material has an ultimate strength of 500 MPa and yield strength of 310 MPa. Determine:

- (a) The necessary shaft diameter using $k_b = 1.5$ and $k_t = 1$.
- (b) Compute the components of the force with which the bearings at O and E push against the shaft.

Figure (1)

QUESTION (2) [10 MARKS]

A load "F" of 10~kN is suspended from a plate "a" held by bolts 1, 2 and 3. The thickness of the plate h=14~mm, $L_1=250~mm$, $L_2=L_3=100~mm$. The bolts are made of steel, $S_{y}=400~MPa$.

Determine:

- (a) The bolt size with a safety factor of 1.7.
- (b) The stresses in bolts 1 and 3 if bolt 2 is taken out, see Fig. 2.

QUESTION (3) [10 MARKS]

A hollow circular shaft of 200 mm outside diameter and 175 mm inside diameter is fitted with a wringing fit to the hole in the boss of a forged flange. The two are then secured by fillet welding as shown in Fig.3. The welded flange is to be bolted to a smooth vertical face, not shown. Determine the weld size if the allowable shear stress for the weld is 100 MPa.

QUESTION (4) [10 MARKS]

A square power transmission screw of a screw press is required to transmit maximum load of 60 kN. The screw outside diameter is 70 mm with a pitch of 12 mm, the coefficient of friction is 0.12 in the threads and 0.125 in the thrust collar and the thrust collar diameter is 60 mm. Determine:

- (a) The torque required to move the load.
- (b) The efficiency of the threads.
- (c) The maximum normal and shear stresses in the screw.
- (d) The bearing pressure in the threads if the height of nut is 240 mm.

QUESTION (5) [10 MARKS]

- (a) Determine the recommended belt velocity for a V-belt drive so that the power transmitted is maximum.
- (b) The drive from a motor to a centrifugal pump consists of three size C V-belt. The motor pulley has a 240 mm pitch diameter and the pump pulley has a 400 mm pitch diameter. The motor runs at 1200 rpm. The belt angle is 40°. What power can be transmitted if the centre distance is 1 m? Belt cross sectional area equal 230 mm², belt density is $1150 \, \text{kg/m}^3$, coefficient of friction is 0.13 and the allowable tensile stress is 2 MPa.

GOOD LUCK

Machine Design (ME 454)

Direct normal stress: $\sigma_d = \frac{F}{A}$ Direct shear stress: $\tau_d = \frac{F}{A_s}$

$$\sigma_b = \frac{My}{I}$$
 Torsion stress: $\tau = \frac{Tr}{J}$

$$\tau = \frac{Tr}{J}$$

Stresses on inclined planes:
$$\sigma_{\theta} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad \text{and} \qquad \tau_{\theta} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\tau_{\theta} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \quad and \quad \tan 2\theta_p = \frac{\tau_{xy}}{\left(\sigma_x - \sigma_y/2\right)}.$$

$$tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y/2)}$$

$$\tau_{max} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \quad and \quad \tan 2\theta_s = \frac{-\left(\sigma_x - \sigma_y/2\right)}{\tau_{xy}}.$$

$$\tan 2\theta_s = \frac{-\left(\sigma_x - \sigma_y/2\right)}{\tau_{xy}}$$

Pr essure vessels:

$$\sigma_1 = \frac{p \, d}{2 \, t}$$
 and $\sigma_2 = \frac{p \, d}{4 \, t}$

$$\sigma_2 = \frac{p d}{4t}$$

Tensile load due turning: $f = M/\sum n_i \ell_i^2$ Secondary shear: $s = T/\sum r_i^2$

Preloading:
$$\delta = \frac{F l}{A E}$$
, $F_b = (\frac{k_b}{k_b + k_m}) F_e + F_i$, $F_m = (\frac{k_m}{k_b + k_m}) F_e - F_i$

$$F_m = (\frac{k_m}{k_b + k_m})F_e - F$$

$$F_P = A_t S_P , \qquad S_P = 0.85 S_y$$

$$F_i = \begin{cases} 0.75 \, F_P \\ 0.90 \, F_D \end{cases}$$

$$F_P = A_t S_P$$
, $S_P = 0.85 S_y$, $F_i = \begin{cases} 0.75 F_P \\ 0.90 F_P \end{cases}$, $F_i \ge (1 - C) F_e$ where $C = \frac{k_b}{k_b + k_m}$

Welded joints.

Bending stress
$$\sigma = \frac{Mc}{0.707 h I_u}$$

Bending stress
$$\sigma = \frac{M c}{0.707 \, h \, I_u}$$
 , Secondary shear stress $\tau_s = \frac{T \, r}{0.707 \, h \, J_u}$

Power screws:

$$F_{lifting} = \frac{F \, d_m}{2} \left(\frac{\pi \, \mu \, d_m \, sec \, \alpha \pm \ell}{\pi \, d_m \mp \mu \, \ell \, sec \, \alpha} \right) + \frac{F * \mu_c \, d_c}{2} \qquad , \qquad e = \frac{F \, \ell}{2 \, \pi \, T} \qquad , \quad Self \, \, locking : \, \mu > tan \, \lambda \, \cos \alpha = \frac{F \, \ell}{2 \, \pi \, T} = \frac{F \, \ell$$

$$e = \frac{F \ell}{2\pi T}$$

$$Power = (F_1 - F_2)V$$

Power =
$$(F_1 - F_2)V$$
, Open drive: $\theta_{1+2} = \pi \mp 2 \sin^{-1}\left(\frac{d_2 - d_1}{2C}\right)$

$$\frac{Power}{m^2} = \left(\sigma_{all} - \omega V^2\right) V \left(\frac{e^{\int \theta} - 1}{e^{\int \theta}}\right) \qquad ; \qquad \frac{E_l - F_c}{F_2 - F_c} = e^{\int \theta} \qquad , \quad F_c = mass \ per \ unit \ length \times V^2$$

$$\frac{F_l - F_c}{F_2 - F_c} = e^{\int G}$$

$$F_c = mass \ per \ unit \ length \times V^2$$

Shaft design;

$$d_o^3 = \frac{16}{\pi \tau_{all} (1 - c^4)} \sqrt{\left(k_b M_b + \frac{\alpha F_a d_o (1 + c^2)}{8}\right)^2 + (k_t M_t)^2}$$

 $A = 1.414\pi Ar$

 $J_{\nu} = 2\pi r^{\parallel}$

In an April