College of Engineering \& Technology
Department: Mechanical Engineering . Marks: 10
Lecturer: Dr. Nola Afify
Time: 3.00-4.00
Course Code: ME356
Date: 27/11/2012
Answer the following questions:
Question one (5 marks)
A) Define:
i) Machinability: It is the property of a material which refers to arelative case with which a material can be cat.
ii) Resilience: It is the property of a material to absorb energy and to resist shock and impact loads.
B) What are the main considerations should be taken while choosing the factor of safety?
(1) Material properties's aren't known exactly,
(2) Effect of size, heat treatment and type of loading -
(s) Effect of wear, time and environment on M / C lite.
(4) assumptions may not be exact.
(s) Overall Concern for human Safety.
(6) Shut down and maintainance may take loss of cost. Question two (5 marks)
A shaft is required to transmit 600 kW at $110 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The shear stress is not to exceed 60 MPa and twist in a length of 1.5 meters not to exceed 2 degrees. Find the diameter of the shaft. Take modulus of rigidity as 84 GPa .

$$
\text { power }=600 \mathrm{~kW}, n=110 \mathrm{rpm} ; \tau_{\text {max }}=60 \mathrm{MPa}, L=1500 \mathrm{~mm} \quad \theta=2^{\circ}
$$ $G=84 \times 10^{3} \mathrm{MPa}$ i d ?

$$
\begin{aligned}
& \because p \text { owner }=T * \omega \\
& 600 * 10^{3}=T * \frac{2 \pi * 110}{60} \\
& \because \frac{T}{J}=\frac{\tau_{\max }}{r}=\frac{G_{\theta}}{L} \\
& T=52.1 * 10^{3} \mathrm{~N} . \mathrm{m}=52.1 * 10^{6} \mathrm{~N} . \mathrm{mm} \\
& \frac{32 T}{\pi d^{4}}=\frac{2 Z_{\text {max }}}{d}=\frac{G 0}{L} \\
& \frac{32 * 52.1 * 10^{6}}{\pi d^{4}}=\frac{2 * 60}{d}=\frac{84 * 10^{3} * 2 * \pi / 180}{1500}
\end{aligned}
$$

$$
\frac{530.7 * 10^{8}}{d^{4}}=\frac{120}{\alpha}=1.95
$$

Considering the strength of the shaft (1) (2)
$d^{\prime}=164.1 \mathrm{~mm}$
considering the stiffness of the shaft (1) $=3$

$$
d=128.4 \mathrm{~mm}
$$

Take d pr

Question three (5 marks)
10 Mm
An electric motor driven power screw moves a nut in a vertical plane against a car weight of 30 kN at $50 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The screw has a single square thread of 6 mm pitch on a major diameter of 40 mm . The coefficient of friction at screw threads is 0.1 . Estimate:
i) The power of the motor.
ii) The power screw efficiency.

$$
w=30 * 10^{3} N_{6} \quad n=50 \mathrm{rpm} \quad L=P=6 \mathrm{~mm} \quad c d=40 \mathrm{~mm} \quad \sim \mu=0.1
$$

Req power \& I

$$
\because P=d_{0}-d_{i} \Rightarrow d_{i}=34 \mathrm{~mm} \quad-d_{m}=\frac{d_{0}+d_{i}}{2}=37 \mathrm{~mm}
$$

$$
T=84.6 * 10^{3} \mathrm{~N} . \mathrm{mm}=84.6 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\because T_{0}=\frac{W L}{2 \pi}=\frac{30 * 10^{3} * 6}{2 \pi}=28.6 * 10^{3} \mathrm{~N} . \mathrm{mm}
$$

$$
\begin{aligned}
& \because \eta=\frac{T_{0}}{T}=\frac{28.6 * 10^{3 \pi}}{84.6 * 10^{3}} \\
& \text { Question Four (5 marks) }
\end{aligned} \Rightarrow \eta=33.8 \%
$$

For the bolted Joint shown in following figure find the maximum shear stress if the outer. diameter of the bolts is 14 mm .

Good Luck
Dr. Rola Afify
[Page 2/2]

$$
\because F=3000 \mathrm{~N}, L=100 \mathrm{~mm}, L_{1}=80 \mathrm{~mm}, \quad L_{2}=20 \mathrm{~mm}
$$

$$
d_{0}=14 \mathrm{~mm}
$$

$$
\begin{align*}
\because M & =F * L=3000 * 100=3 * 10^{5} \mathrm{Mmm} \\
\because M & =3 F_{1} L_{1}+1 F_{2} L_{2} \\
3 * 10 & =240 F_{1}+20 F_{2} \rightarrow(1) \tag{1}\\
\because \frac{F_{1}}{L_{1}} & =\frac{F_{2}}{L_{2}} \\
\frac{F_{1}}{80} & =\frac{F_{2}}{20} \\
F_{2} & =\frac{F_{1}}{4}=0.25 F_{1} \rightarrow
\end{align*}
$$

sub (2) in (1)

$$
\begin{array}{r}
3 * 10^{5}=240 F_{1}+5 F_{1} \\
F_{1}=1224.5 \mathrm{~N}
\end{array}
$$

subin (2)

$$
F_{2}=306.1 \mathrm{~N}
$$

shear force

$$
F^{\prime}=\frac{F}{n}=\frac{3000}{4}=750 \mathrm{~N}
$$

Maxforce on Bolt (1)

$$
\begin{gathered}
d_{i}=0.85 * 14=11.9 \mathrm{~mm} \\
\sigma_{t}=\frac{F_{1}}{A}=\frac{1224.5}{\frac{\pi}{4} d_{i}^{2}}=\frac{1224.5}{\frac{\pi}{4}(11.9)^{2}}=11 \mathrm{MPa} \\
C=\frac{F}{A}=\frac{F^{\prime}}{\frac{\pi}{4} d_{1}^{2}}=\frac{750}{\frac{\pi}{4}(11.9)^{2}}=6.74 \mathrm{MPa} \\
C_{\text {max }}=\sqrt{\left(\frac{\sigma_{t}}{2}\right)^{2}+Z^{2}}=\sqrt{(5.5)^{2}+(6.74)^{2}} \\
C_{\text {max }}=8.7 \mathrm{MPa}
\end{gathered}
$$

