sheet \#4:"

1. A 10 cm commercial steel pice 100 m long carries oil of sp.gr. 0.9 and viscosity 0.0025 Ns/mfrom A to B which is 2 m lower than A. Calculate the required pressure at A to deliver $20 \mathrm{lit} / \mathrm{sec}$. If the pressure at $B=4 \mathrm{bar} \mathrm{cm}$
2. A 0.314 lit/sec of oil of sp.gr. 0.8 and viscosity. 0.01 Ns. m^{2} flow from point ' A ' to point ' B ' through a pipe 5 cm . diameter and 1000 mt long. The pressure at ' B ' is secondary losses culate the pressure at 'A' Neglect lit/sec and the If the discharge is reduced to 0.0314 calculate the pressure at ' Λ '. If the flow is turbulent take 'f' $=0.03$.
3. A pump delivers 1 its of a liquid through a galvanized iron pipe "AB" 5 cm diam. and 1 km long discharging into the atmosphere at "B" which is 4 m higher than "A.". What should be the pressure at " A " if the liquid is :-
1- Water
2- Liquid of sp.gr. 0.9 and viscosity $0.004 \mathrm{~N} . \mathrm{S} / \mathrm{m}^{2}(0.04$ poise) . 0.95 and viscosity $0.35 \mathrm{~N} . \mathrm{S} / \mathrm{m}^{2}$
3- Liquid of sp.gr. 0.95 and viscosity $0.35 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ (3.5 poise)
4. Water from a large reservoir is discharged to atmosphere through a 100 mm diam. pipe 450 m long. The entry from the reservoir to the pipe is sharp and the outlet is 12 m below the surface level. in the reservoir. Calculate the discharge . (cast iron pipe)
5. Water discharged from a large tank into atm. through a pipe 50 mm: diam. and 45 m . long which is sharp at entry , after which there is a sudden enlargement to a pipe of 75 mm . diam. , and 30 m . long. The point o delivery is 6 iii. Below the surface after in the tank . Determine the discharge in cu.m./sec. Assume that $\mathrm{f}^{\prime}=0.02$ for both pipes.
6. A pipe 2 km long connects two water tanks where the free surface level difference $=10 \mathrm{~m}$. The first km is 4 cm diameter and the second km is 6 cm diameter, and each has one bend $(c=0.8)$. 'f' for the pipe $=0.02$ compute the discharge.
7. Two water reservoirs with a difference in level of 10 mt. are connected by a pipe line 100 mt . long and 0.5 mt . diameter. If the friction factor for the pipe is 0.001 . Calculate the flow rate. If at a later date the pipe line is replaced by two pipes in parallel each 0.4 mt . diameter with the same friction factor as the original pipe. Calculate the flow rate.
8.

What is the effect of pipe roughness on the friction loss under laminar flow condition ? Explain your answer.

The friction loss in pipe flow can be written in the form $h=f . i \cdot v^{2} / 2 g d$. Is it possible for the factor f to be greater than one ? Explain your answer.
10. Why are eddies formed when there is a change in the velocity vector through a pipe.
\|. In a pipe flow, under what condition can you measure the energy difference between two points using only two
12. What are the measuring instruments required to determine the energy difference between two points along an inclined convergent pipe transmitting liquid?
13. What is the effect of temperature rise on the coefficient of friction of a rough pipe transmitting liquid at

What are the factors affecting tine friction loss in case
of laminar and turbulent flow?

