pumps

shaft power

Hydraulic energy
Hydraulic power

$$
\begin{aligned}
\text { Hydraulic power } & =P Q=w h Q \\
& =\frac{N}{m^{2}} * \frac{m^{3}}{s}=\frac{N \cdot m}{s} \quad(\text { watt })
\end{aligned}
$$

$$
\underset{\text { pump }}{\eta_{\text {efficieng }}}=\frac{\text { O/P }}{i / P}=\frac{\text { Hyd. power }}{\text { shaft power }}=\frac{P Q}{\text { sh. power }}
$$

$$
\text { shaft power }=\frac{P Q}{\eta_{\text {pump }}}=\frac{\omega h Q}{\eta_{p}}
$$

$$
h_{\text {pump }}=h_{\text {st }}+h_{\substack{\text { losses } \\ \text { total }}}+\frac{v^{2}}{2 g}
$$

$h_{\text {static }}=h_{s t}=$ level difference between delivery and suction tanks.

$$
P_{\text {pump }}=\omega \text { hpump }
$$

Types of pumps
$\sqrt{ }$
positive displacement pumps
a-Reciprocating pumps
i) piston pump
ii) Diaphram pump
b) Rotary pumps
i) Gear pump
ii) vane pump
iii) parallel cylinder pump

- used for fluid power systems.
Advantages

1) High-pressure Capability.
2) small, Impact size -
3) High volumetric efficiency.
4) small changes in efficiency throughout the design pressure range.
5) Great flexibility of performance.

Non-positive displacement pumps
(Dynamic head pumps)
a-Centrifugal pump
b. Axial flow pump

- used for low-pressure, high -volume flow application.
- used for transporting fluids from one location to another.
* Positive displacement pumps a-Reciprocating pumps
i) piston pump

$N=$ rpm of motor
S: stroke
Qact $<Q_{\text {ideal }}$ due to leakage

$$
Q_{\text {act }}=\eta_{\text {vol }} Q_{\text {ideal }}
$$

$\eta_{v_{0}}=$ volumetric efficiency $\simeq 97 \%$

* This pump is a type of positive pumps which gives the max. discharge.
* If the delivery value is closed, the motor or the pump can be destroyed.
* when this pump rotates at constant speed, it should give constant discharge.
ii) Diaphram pump
disadvantages
- very low pressure
- low discharge

b) Rotary pumps
i) Gear pump

$$
\begin{aligned}
& Q=\eta_{\text {vol }} * 2 n(a * l) \frac{N}{60} \\
& n=\text { no. of teeth } \\
& l=\text { gear length } \\
& a=\text { area between two teeth } \\
& N=\text { rpm }
\end{aligned}
$$

* This pump is only used for oil.
* One of the cheapest pumps.
* High pressure but low discharge.
ii) vane pump
* working at soobar pressure
* expensive

iii) parallel cylinder pump
* working at 600 to 700 bar

* The most expensive pump.

Non-positive displacement pumps
(Dynamic head pumps)
a) centrifugal pump

$\frac{\text { * performance curves of pumps }}{H_{\uparrow}}$

Lo, Tr ar ELivill aid Losers in dell
$\rightarrow Q$

$$
\left.\xrightarrow[\substack{\text { B.e.p(bestefficiency point) }}]{\substack{\text { shaft } \\
\text { power }}} \begin{array}{l}
\text { shaft } \\
\text { mechanical } \\
\text { power }
\end{array}\right)=\frac{\omega Q H}{q}
$$

losses, $\rightarrow Q$

* Piping system curve

$$
\begin{aligned}
h_{\text {piping }} & =h_{s t}+h_{\text {losses }}^{\text {total }}
\end{aligned}+\frac{V^{2}}{2 g} \quad\left[\begin{array}{l}
Q=A n \\
\frac{Q}{A}=h \\
\\
=h_{s t}+V^{2}\left(\frac{f L}{d 2 g}+\frac{K_{1}}{2 g}+\frac{K_{2}}{2 g}+\cdots\right)+\frac{V^{2}}{2 g} \\
\end{array}\right.
$$

$h_{p}=h_{s t}+K Q^{2}$ piping system curve

* when putting the pump in the piping system

B) Axial flow pump (propeller pump)

* This pump gives very high discharge
\& very low pressure (head) up to 15 m
* It used for irrigation, sanitation.
* Performance curves

 Mb le le le were Whine shoP Wale
cavitation in pumps

 - SL he シin Hibll slept Whire ebpers (1)

daidloceredrain J1 Jo ostis is ontisl (1)

(hss arif (h) suj (s)

to avoid cavitation

$$
\begin{aligned}
& P_{\min }>P_{\text {val }}-P_{a t_{m}} \\
& h_{\min }>h_{\text {val }}-h_{a t m}
\end{aligned}
$$

* it happens Just before pump
$h_{s s}$: static suction head
$h_{s} d=\sim$ delivery
$h_{m s}$: manometric suction head
had: delivery

$$
h_{\min }=h_{m s}=h_{s s}-h_{i s}-\frac{v^{2}}{2 g}
$$

hes: head loss in suction side

$$
h_{s s}-h_{l s}-\frac{v^{2}}{2 g}>h_{\text {vap }}-h_{a t_{m}}
$$

for positive displacement pumps
4

$$
h_{s s}-h_{\text {s }}-\frac{v^{2}}{2 g}-\text { NPSH }>h_{v a p} \text { - hat }
$$

$$
h_{5 s}-h_{15}-\frac{v^{2}}{2 g}+\left(h_{\text {atm }}-h_{\text {nap }}\right) \geqslant \text { NPSH }
$$ head pumps Net positive suction head Biellung

