CHAPTER 1 N

Introduction to
Modeling and
Simulation

1.1 DYNAMIC SYSTEMS
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E[’his tcxﬂdiscusscs both,the. modeling of dynamic systems as found in the major en-
gineering disciplines andgolutions of the resulting differential equations by analyti-
cal and computational means. The book is intended for use at the introductory level,
but serves the practicing engineer as a reference source as well. It presents modeling
of the engineering disciplines using a unified approach. Since the equations that rep-
resent the dynamics of a physical system can take several different forms, we em-
phasize selecting the form most compatible with the mathematical method or
numerical process that is ultimately to be used in solving the equations. This chapter
presents general considerations that will be used throughout the text.

1.1.1 Examples of Dynamic Systems

Static systems have an output response to an input that does not change with time}
L.e., the nput 1s held constant. This means that the output always has the same jn-
stantaneous relationship with the input. Dynamic systems have a response to an

input that is not instantaneously proportional to the input or disturbance and that
may continue after the input is held constant. Dynamic systems can respond to input
signals, disturbance signals, or initial conditions.

Examples of dynamic systems are all around us. They may be observed in com-
mon devices employed in everyday living, Figure 1.1, as well as in sophisticated engi-
neering systems such as those in spacecraft that took astronauts to the moon. Dynamic
systems are found in all major engineering disciplines and include mechanical,
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Figure 1.1 Examples of dynamic

Water Tower Boiling Pot

systems.

electrical, fluid, and thermal systems. They can be observed as well in natural systems
(ecological, biological, economic, traffic, etc.): but while these have a dynamic be-
havior that is similar to that of engineering systems, they are not treated here.

i - Mechanical Systems. Systems that possess significant mass, inertia, and

spring and energy dissipation components driven by forces, torques, specified dis-

‘placements are considered to be mechanical systems. An automobile is a good ex-
“ample of a dynamic mechanical system. It has a dynamic response as it speeds up,
slows down. or rounds a curve in the road. The body and the suspension system of
the car have a dynamic resporise of the position of the vehicle as it goes over a bump.
_An airplane in flight has a dynamic response of its speed and altitude as it maneu-
vers in the air. A paint shaker at the hardware store, with its unbalanced motor sus-
pended on springs, provides a dynamic response of the position of the frame when
the device is in use. A musical drum has a dynamic response or vibration of the po-
sition of the membrane. The structural frame of a building may have a dynamic re-
sponse or vibration due to external loading, such as wind forces or ground motions.

P Electrical Systems. Electrical systems include circuits with resistive, capac-
itive, or inductive components excited by voltage or current. Electronic circuits can

include transistors or amplifiers. We need not look far to find good examples of elec-
trical systems with important dynamic response characteristics. A television receiver

has a dynamic response of the beam that traces the picture on the screen of the set.
The TV tuning circuit, which allows you to select the desired channel, also has a dy-
namic response, and a simpler, though no less important, example is the dynamic
voltage and current responses that occur when you switch a light on‘or off.

%~  Fluid Systems.  Fluid systems employ orifices, restrictions, control valves,

accumulators (capacitors), long tubes (inductors), and actuators excited by pressure




or lluid Aow. A city water tower has a dynamic response of the height of the water as
a function of the amount of water pumped into the tower and the amount being used
by the citizens. If a garden hose is suddenly blocked at its end when water is flowing
through it, the pressure in the hose will have a dynamic response. Airflow across a
cavity in a tube will cause a dynamic response (generate an acoustic tone) in an
organ pipe. A water pump with an accumulator to damp out pulsations will have a
dynamic response of the output pressure when in use.

Z‘f — Thermal Systems. Thermal systems have components that provide resis-
tance (conduction, convection, or radiation) and capacitance (mass and specific
heat) when excited by temperature or heat flow. A heating system warming a house
has a dynamic response as the temperature rises to meet the set point on the ther-
mostat. Placing a pot of water over a burner to boil has a dynamic response of the
temperature. The size of the pot. the material it is made of, the amount of water in the
pot, and the size of the burner all play a role in how quickly the water comes to a boil.
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) — Mixed Systems. Some of the more interesting dynamic systems use two or
more of the previously mentioned engineering disciplines, with energy conversion
between the various components. Figure 1.2 shows several examples.
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Figure 1.2 Examples of mixed
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C‘;'f\ Electro-Mechanical. Systems employing an electromagnetic componenf
that converts a current into a force generally have a dynamic response. Examples

are a loudspeaker in a stereo system, a solenoid actuator, and electric motors. In‘a
loudspeaker, electrical current from the amplifier is transformed into movement of

the speaker cone and the subsequent air pressure fluctuations that cause us to hear

the amplified sound.

&, _ 7. Fluid-Mechanical.  Hydraulic or pncumatic systems with fluid-mechanical
conversion components exhibit dynamic behavior. Examples are a hydraulic pump,




a valve-controlled actuator, and a hydraulic motor drive. A hydraulic servo system
used for flight control in an airplane is a good example of a common electro-fluid-
mechanical dynamic system.

_5 Thermo-Mechanical. A combustion engine used in a car, truck, ship, or
alrplane is a tw (or simply, thermomechanical) device, since
it converts thermal energy into fluid power and then into mechanical power.
Thermal dynamics, fluid dynamics, and mechanical dynamics are all involved in the
process.

,L‘ Electro-Thermal. A space heater that uses electric current to heat a
filament, which in turn warms the air, has a dynamic response to the surrounding
environment. An electric water heater is another common example of an
electrothermal dynamic system.

1.1.2 Definitions Related to Dynamic Systems

Modeling is the process of identifying the principal physical dynamic effects to be

considered in analyzing a system, writing the differential and algebraic equations

from the conservation laws and property laws of the relevant discipline, and reduc-
ing the equations to a convenient differential equation form.

A system is a set of interacting components connected together in such a way
_that the variation or response in the state of one component affects the state of the
others In this text, “system” refers to a collection of components from the major en-
gineering disciplines.

The major disciplines of engineering systems are mechanics, electricity and
electronics, fluid mechanics and fluid controls (including hydraulics and pneumat-
ics), and thermodynamics. Magnetism and optics also involve dynamic systents; but
are not covered here.

The behavior of a system is characterized by its response to external inputs,
disturbances, and initial conditions. Figure 1.3 shows this relationship. By outputs,
we mean the dependent variables of the differential equation that represent the re-
sponse of the system. By inputs, we mean functions of the independent variable of

the differential equation, the excitation, or the forcing function to the system. By ex-
ternal disturbances or perturbations, we mean those external environmental effects

Initial Conditions

Inputs . Outputs
i Dynamic System

Figure 1.3 Excitation and response
Disturbances of a system.



that may occur randomly or unexpectedly. The initial conditions are the initial val-
ues of the dynamic variables of the system. The dynamic variables of a system are

Response

those variables whose time derivatives appear in the governing equations.

As an example of a system and its response, consider a vehicle traveling down
the road and passing over a bump. The positions of the wheel and the body of the
vehicle relative to the ground could be the system variables. Their differential equa-
tions could be written from a knowledge of the spring rates, mass, and damping val-
ues of the vehicle’s components. The initial conditions would be the values of these
variables just before the vehicle hits the bump. The bump would be the input to the
system, and any aerodynamic turbulence could be considered a disturbance. From
these considerations, it is possible to develop equations and solve them for the out-
puts, 1.e., the displacements of the wheel and body. The maximum stresses in the
springs could then be found, as could other critical performance parameters neces-
sary in the design of the vehicle.

A dynamic system is described by time-differential equations; therefore, the
future response of the system is determined by the present state of the system (the
initial conditions) and the present input. Thus, a dynamic system may continue to
have a time-varying response after the inputs are held constant. In contrast, a static
system is described by algebraic equations, so that the present response of the sys-
tem is totally determined by the present value of the input, and there will be no
change in the response in the future if the input is held constant.

The transient response of a dynamic system to an external input refers to the

behavior of the system as it makes a transition from the initial condition to the final
condition. The transient response is expressed as a function of time. Figure 1.4 shows
a typical dynamic response of a system. A dynamic system will reach a steady state

after all of the transients have died out. The time it takes to reach the steady state is
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Figure 1.4 Typical dynamic response
Time. ¢ and settling of a system.
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A linear system is described by linear algebraic and differential equations. By
contrast, a nonlinear system has nonlinear combinations of the variables and their
derivatives. Examples of nonlinear functions are the product of two variables, the
square of a variable, a trigonometric function of a variable, and so on. Equations
(1.8b) and (1.8¢) are examples of nonlinear differential equations. .

The analytic solution of a differential equation is the mathematical expression
of the dependent variable as a function of time and may include exponentials, sinu-
soids, and/or other mathematical functions. An analytic solution of a given differen-
tial equation requires knowledge of the initial conditions and the inputs as explicit
functions of time. Analytic solutions are found by employing techniques for solving
classical differential equations or by using Laplace transform techniques. (See Ap-
pendices E and F for a discussion of these methods.)

Linear differential equations are well understood, and their analytical solu-
tions usually can be obtained by applying the widely accepted methods that are dis-

cussed in a course in elementary differential equations. Nonlinear systems, on the
other hand, with the exception of a few first-order systems and a limited number of
second- or higher order systems, do not have known analytic solutions. If an analytic
solution is not possible for a nonlinear system, a numerical approximation to the so-
lution of the nonlinear differential equation might be found by using appropriate
simulation methods. We call such an approximation a computational solution.

Computational solutions to differential equations can be found by numerical
integration, using a digital computer. Numerical integration is the process of com-
puting an approximate solution to the integral of a derivative function by a numeri-
cal algorithm. The algorithm propagates the solution of the differential equation by
using small increments in time. Thus, the solution of the differential equation is
known only at certain discrete times. Computational methods commonly employ
the state-space representation of differential equations. Calculation of the response
of a dynamic system in this way is commonly called digital simulation.

In analog computation, the differential equation is represented by an inter-
connection of linear and/or nonlinear electrical components and electronic integra-
tors (operational amplifiers with capacitive feedback). Since the equations that
govern the electrical system are the same as the equations that govern the dynamic
system under consideration, an analogy between the two systems is formed. The
electronic integrators then “solve” the differential equation by executing an electri-
cal dynamic behavior corresponding to that of the system being studied. Many sys-
tems can be simulated by making an “analogy” between the voltages displayed by an
analog computer and the variables of the equations being solved.

1.2 MODELING OF DYNAMIC SYSTEMS

1.2.1 Steps in Modeling and Representing Dynamic Systems



Modeling sequence and levels of representation.

L <— Original Design

Modification

Actual Physical
Dynamic System

~_ Determine Effects
) to Be Considered
Modeler's Perception
of Dynamic System

Write Component and

‘ System Equations
Mathematical
Representation ; ; : .
P . Classical Differential Equations
, — Transfer Function
Calculated State-Space Equations
. s Analytic Solution
, — Digital Simulation
P Analog Simulation
s Static Gain

, — Disturbance Sensitivity
Dynamic Characteristics




