Example 3.5 Spring Scale

A schematic of a simple spring scale used to measure items that are sold by weight is
shown in Figure 3.11. The weighing pan has a mass of . Develop an equation describ-
ing the motion of the pan.
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Solution  When the Spring is unstretched. it exerts no force on the weighing pan. When
the pan is installed. jts weight stretches the spring an amount A until the spring exerts a
loree on the pan that is cqual to the weight of the pan. That s,

kA =W = mg (3.36)

The quantity A determines the static equilibrium position of the system. If we
use x to measure the displacement of the pan from this static equilibrium posi-
tion, the forces acting on the pan are its weight W and the spring force
F, = k(x + 4A).

Applying Newton’s second law to the mass, we obtain

SF. = my (3.37)
or
W—F =mx (3.38)
Thus, we have
W — k(x + A) = mx (3.39)
which reduces to '
mx+hkx=W-—kA=0 (3.40)

Hence, if the motion of a linear mechanical spring-mass-damper system acted on by
gravity is measured from its equilibrium position, the equation of motion takes the sim-
ple form of Eq. (3.40). in which the weight forces are canceled by the initial spring
forces due to the static defiection. Any subsequent motions are calculated with respect
to the equilibrium position.

We have neglected energy dissipation in this model. and the cquation we derived
cannol predict any decay of the motion of the pan once it is disturbed from its equilib-
rium position. To simulate the decay, the model would have to be modified to include
energy dissipation of some kind.



Example 3.6 Machine Part

Flg_ulre 3.12 shows a machine part that slides along a smooth lubricated surface that it
§elt 18 attached to a fixed base by a spring. In its operation. the part is sub'ectedct > :
force that varies harmonically with time at a frequency of sz = w rad/s %)eri (ha
governing equation of motion for the mass 1., . i
Solution In Figure 3.13, the reference axis x is taken positive to the right, and the
masses are lgbeled m, and m,. The oil film is modeled as a viscous dampii ,elem 1ttl‘
Free-body diagrams of the masses, spring, and damper are shown in Fis:urcg? 14 \si:h‘
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Figure 3.14 Free-body diagrams.

forces that are consistent with the positive displacements shown in the schematic of

the system.
Newton'’s second law is now applied to each of the masses:

Node 1:

P =mpi (3.41)

—kgy + bl x, — %) = fnx, (3.42)
Node 2:

DF =¥, (3.43)

—b(x, — x,) + Fcos wt = m,X, (3.44)

Thus, the two second-order equations of motion become

mx, + bx, — bx, + kx, = 0 (3.45)

m,x, + bx, — bx; = Fcos wt (3.46)



We may also write these equations in the following form:
[m,D* + bD + k]x, — bDx, = 0 (3.47)
[m,D? + bD]x, — bDx, = F cos wt (3.48)

We solve for x, from the first equation and substitute into the second equation:

e : (3.49)
(m,D* + bD + k]

. £2D2‘-> o

[m,D% + bDJx, — — ok = Fcos w (3.50)

 |m,D* + bD + k|

Alter simplification, we obtain the following third-order equation:

[y D7 + (1 = m)b DY + kD + bkD)x, = [m,D” + bD + K]F cos wt (3.51)

We next consider an example in which the input to the system is a displace-
ment instead of a [orce.

Example 3.7  Vehicle Suspension System

A simplified translational model of an automotive suspension system is constructed
by considering only the translational motion of one wheel of the vehicle (quarter-car
model). The model is shown in Figure 3.15. The stiffness of the tire is modeled by a lin-
ear spring, the tire, axle, and moving parts by a mass m,, the suspension system by a
spring and viscous damper (shock absorber), and the supported vehicle components
by a mass m1,.

Solution  We follow the same basic steps as used in previous examples. A coordinate
system for translation is selected, with y taken positive upwards. If the wheels stay in
contact with the ground, the lower end of the tire spring follows the surface of the road-
way, as described by y,(¢). The springs, damper, and masses are separated from their at-
tached components so that the forces acting on them can be identified in terms of the
parameters of the problem. Figures 3.16 and 3.17 illustrate the appropriate free-body
diagrams. We next use Newton's second law to write the equations of motion for each
mass and imply equilibrium of forces at points where elements join.

We measure y; and y, from the at-rest equilibrium position of the springs. acted
on by the weight of the vehicle’'s components. This means that the torces due (o the
weights of the components are balanced by the preload in the springs, and the two will
cancel each other in the equations of motion. Thus, to simplify the process, we write the
equations of motion without including the weight terms and understand that y, and ¥,
are measured from the equilibrium position. (See Example 3.5.)
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Figure 3.17 Free-body diagram
ks(¥) = ¥a) b(y;, -3 ofm,

Recognizing that the springs will probably be in compression most ol the time,
we show the spring forces compressive and write the spring element force equations ac-
cordingly. In the development of an accurate set of governing equations, it doesn’t mat-
ter whether elements are shown in tension or compression, as long as the element force
equations are consistent with the convention adopted. Thus, for mass m,.

DF, = mJ (3.52)
ki(yo — 1) — kaly, — ¥2) — b(.';’] = yi) = my, (3.53)
And mass m,,
2 F, = mj, (3.54)
k(y — ¥s) A+ bly; — w) =0 (3:55)

The resulting equations describing the motion of the two masses are
myyy + by, — v + ky(y, — yi) + Ky = k(o) (3.56)
and

Ak — Ky — %) — by — ) =0 (3.57)



Example 3.10  Engine and Propeller Model

A simplified model of a turboprop aircraft engine and propeller is shown in Figure 3.22.
The mass moment of inertia of the rotating parts of the engine is represented by J,, the
mass moment of inertia of the propeller by J,. The driving torque applied to the engine
is 11(¢). The drive shaft has a small mass moment of inertia in comparison to that of the
engine and propeller and is represented by an inertialess discrete torsional spring. The
rotation of the propellcr is opposed by aerodynamic drag torque, which is proportional
to the square of the rotational speed of the propeller. Develop a mathematical model
for this system, and write its equations of motion.

Solution A reference axis x is established along the drive shaft as shown, and rota-
tions 6, and 6, of inertias /, and J, are taken to be positive along this axis, according to
the right-hand rule at the propeller end of the shaft. If it is assumed that 6, > 0,, then
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the drive shaft torques must be in the directions shown in Figure 3.23. Of course, the

equations can just as easily and correctly be derived by taking 6, < 6, and reversing the
torque; just be consistent.

The equations governing the motion of the two inertias become the following;
At the 0, node:

>M, =18, (3.74)

T(2) + k(8, — 8) = b, (3.75)



At the ¢, node:

>M, =16, (3.76)

—k(6, = 6,) — b03 sign (6,) = J 6, (3.77)

Equations (3.75) and (3.77) constitute the fourth-order model of the torsional system.

Example 3.11  Geared System

The shaft of Example 3.8 is fixed at one end and has the larger gear of a pair of gears at
the other end. The pitch radii of the steel gcars are ry = 8 inches (64 teeth) and =4
inches (32 tecth); the tooth face widths are 0.5 inch. Find the equation of motion of this
system if the smaller gear has a torque 7 sin wr applied Lo it, where wis the frequency,
in rad/s, of the excitation torque.

Solution The shalt and gears are sketched in Figure 3.24, with angular variables as- &
signed to each gear. The angular coordinates are taken in opposite senses to account for 4
the opposite rotations of two mating gears. The contact force between the mating gear
teeth is called F.

The equations of motion for the (wo gears are: ’
For gear 1:
M, = 16, (3.78)
~T, + Fry = 4,8, (3.79)
For gear 2:
M, = 4,0, (3.80)
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Figure 3.24  Shaft and gear system.



Tsin wt — Fr, = 1,8, (3.81)
Solving for F from the last equation and substituting into the equation for gear 1, we obtain

J28, = T'sin wr

o et (3.82)
; s
J16, + k6, = Fr, = —"L (1,8, — T'sin ) (3.83)
ry
1,6, + 1215"2? + k6, = (T sin w) (3.84)
2 i

This problem requires only one variable to define the position of the gears. As the
two gears turn in contact with each other, the arc lengths they traverse are equal. We
have the following constraint equation to consider:

16, = ry0, (3.85)

Thus, there is only one independent coordinate tor the problem. We solve for ¢, and dif-
ferentiate the result to get 6,

r
61:

&, and B = = él ' (3.80)

i |
rs ry
We substitute this result into Eq. (3.84) and obtain an equation in #, only:

v 3

78 .I,Ei!(l ) + k6, = "L (T'sin wi) (3.87)
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SYSTEMS OF COMBINED TRANSLATIONAL AND
ROTATIONAL ELEMENTS

Mechanical systems are very often composed of combinations of translational and
rotational elements rather than elements of just one type. However, the fundamen-
lal method of developing correct models for these systems remains the same as that
used in previous examples. You should:

(1) Establish an inertial coordinate system (one that is not attached to an ac-
celerating object).

(2) Identity and isolate the discrete system elements (springs, dampers,
masses, rotational inertias).

(3) Determine the minimum number of variables needed to uniquely define
the configuration of the system. This can be done by subtracting the num-
ber of constraints from the number of equations of motion.

(4) Establish convenient axis systems and make appropriate free body sketches,
showing all variables and all forces and torques acting on the elements.

(5) For stiflness and damping elements, write the equations that relate ele-
ment loadings to element deformation variables.

(6) Apply Newton’s second law of motion at all nodes of the model.
(7) Combine equations as necessary to isolate response variables of interest.

These steps are essential for accurate modeling and simulation. The degree to which
you accomplish them correctly, solve the resulting equations, and intelligently inter-
pret the solution will determine your success in modeling and simulation. The next
four examples illustrate the ideas we have discussed. s

Example 3.12  Rolling Wheel

A portion of a mechanical device may be idealized as a uniform. homogeneous wheel
rolling without slipping on a horizontal surface, as shown in Figure 3.25. The center of
the wheel is fastened 1o the frame of the device by a linear spring, and a force js applied
at the top of the wheel. Find the equation of motion that governs the horizontal posi-
tion of the center of the wheel.

Solution  In Figure 3.26, the wheel is shown in a displaced position, and the forces act
ing on it are indicated in a free-body diagram. Since the wheel rolls without slipping, a

Figure 3.25  Rolling wheel and
Spring.

Figure 3.26 Free-body diagram of
wheel.




frictional force foccurs at the point of contact between the wheel and the surface. Only
one variable is required to uniquely define the location of the wheel; thus, the wheel dis-
placement x and the wheel angular rotation # are not independent. In our solution, we
will use x. The wheel is not constrained to rotate about a fixed axis, so we use the general
form of Newton's second law that includes x- and y-translations and refer the moment
and mass moment of inertia to an axis through the center of gravity of the object:

D F. = mx, (3.89)
DF, = my,, (3.90)
>M, =10 (3.91)

The lirst and third equations may be used to develop a description of the hori-
zontal motion of the wheel. Because the wheel rolls on a horizontal surface. there is no
acceleration in the y direction, and the second equation expresses the equilibrium be-
tween the weight of the wheel and the normal force N at the surface. The first and third
equations give

>F. = mx Y F+ f—kx=mx (3.92)

>M, — .08 tF—rf=1,0 (3.93)
We now solve for ffrom the moment equation:
b

Rl ¥ ¥ (3.94)
-

Before substituting the right-hand side of Eq. (3.94) into the translation equation, we
find # in terms of x. Note that as the wheel rolls through an angle 0. the arc length 6
along the rim of the wheel is equal to the distance x traveled by the center. If it is help-
ful. think of the wheel on a stationary axis winding up a rope, the analog of the hori-
zontal surface. The amount of rope wound onto the drum is r6. Thus,

x=r8 and Y=r8, so O=- (3.95)
#
, X
f=F—-Jy45 (3.96)
2,2
Substitution gives
X i
F+1F~1], '—J — kx = mx (3.97)
|gr“j
mx + J. 5 + kx = 2F (3.98)
Er

Fo k.
(m + —;ﬁ)x + kx = 2F (3.99)

e



For a uniform circular disk. the mass moment of inertia with respect to an axis through
its center of gravity is mr’/2. Substituting this for J g BIVES

3 .
~mi + kx = 2F (3.100)
If a rigid body rotates about a fixed axis O, the moment equation in Newton’s
second law can be written for that axis. Both the sum of the moments and the mass
moment of inertia are then written for that axis:

Y M, = J,8 (3.101)
Example 3.13  Trailing Arm Suspension System

A simplified model of an automotive suspension system is shown in Figure 3.27. The
wheel is supported relative to the chassis by a torsion bar spring and a shock absorber.
The tire stiffness is to be represented in the model. Develop the equations governing
the angular motion of the pivot arm.

Solution An x-, y-, z-axis system is established as shown in Figure 3.28. The torsion
bar and tire stiffnesses are represented by linear springs, the shock absorber by a
viscous damper. The torsion arm is shown in a displaced position. It is assumed that

Figure 3.27  Automative suspension
system.

y

Figure 3.28 Suspension schematic
and [ree-body diagram.



the angular motion is small enough that forces from the damper and tire spring remain
essentially vertical. That assumption will need to be verified when the equations are
solved to find the deformation. The pivot arm is assumed to be rigid, and the quantity
u(t) represents the variation in the height of the road surface and acts as an input to the
system as the car moves along the road.

The tire spring, Lorsion spring, and shock absorber forces are

k(u(t) = r,0), ky6, and b(r,0) (3.102)

We use the moment equation form of Newton's second law, written for rotation about
a fixed axis O: '

S M = b (3.103)

—kr0 — rb(r,0) + rk(u(t) — r,6) = J,0 (3.104)

Here the total rotational inertia about the torsion bar axis is the inertia of the arm plus
the mnertia of the mass. The parallel axis theorem is used to calculate the total inertia.

(see Appendix B):
JO . JO{u."m] L3 J!Hﬂ.\‘.‘v‘ (3105)
To = Jo gy + mis; (3.106)
JoB + 138 + (ky + rik)8 = rok u(t) (3.107)

The quantity u(1) is assumed to be a known function of time as the vehicle moves
forward.

As an additional example of modeling mechanical systems we consider a hoist-
ing system that contains a translational mass. a damper, and a spring, as well as a tor-
sional spring and two rotational inertias.



Example 3.14  Hoisting System

Find the differential equations describing the motion of the hoisting system shown
in Figure 3.29. A torque supplied by the motor at the right end of the shaft raises or
lowers the mass 71, The mass is guided so that it can move only in the vertical direction.
and a viscous friction device between the container and its guides is used to damp out
possible oscillations.

= Figure 3.29  Hoisting system.

Solution  First, we sketch the two spring clements and the damper element and show
the loadings corresponding to positive values of the displacement variables. Next. letting
k be the tensile stiffness of the hoisting cable, we write the element load-deformation
equations in terms of these variables. Then we show the two inertias and the mass with
compatible loadings acting on them. The element loadings are sketched in Figure 3.30.
The element loading-deformation relations are

T, = ky(0, = 6,) (3.108)

i
1

F=k(r6,—z) F,=bz (3.109)

Applying Newton's second law to the two inertias and to the mass, we obtain the
following equations:
At 6, node:

oM, =18 (3.110)
~T, — rF =18, (3.111)

510, = =k, (6, = 6) — rk(r,8, — 2) (3.112)
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At 8, node:
M, = 1,8, (3.113)
I+ ryFy = Jyb, (3.114)
1,0, = kp(8, = 6;) + raFy (3.115)
Hoisted mass:
D =mi (3.116)
mz = —bz + k(r,6, — z) - W (3:117)

The foregoing three second-order equations ol motion can be combined into a single
sixth-order equation or written as six first-order equations. Selecting the latter in
order to prepare for digital simulation of the system response, we deline the following
state variables:

=8 =0, xa=8, = B=2 X=2 (3.118)

- =) i

With these definitions, the state space representation of the system is given by the
following six equations:

= (3.119)

X5 =Rl x5 ~ X — il g, — 2 (3.120)
Xy = (3.121)

1= [BEy = s — 50106 (3.122)

£ = % (3.123)

X = [=W = bx; + klrix; = %)]/m (3.124)



