Chapter 3
Modeling of mechanical systems
The physical behavior of each mechanical element, together with newtons laws of motion, provides the fundamental principles governing the development of suitable models for mechanical systems.

Translational systems

* springs

spring Gnstant (N / m)

$$
F=K\left(x_{2}-x_{1}\right)
$$

for a linear springs

Ex.
A tensile force of 350 N is applied statically to the free end of a linear spring that is fixed at the other end as illustrated in the figure below.
The spring constant is $2000 \mathrm{~N} / \mathrm{m}$. Find the resulting deflection

$$
\begin{gathered}
F=K\left(x_{2}-x_{1}\right) \\
350=2000\left(x_{2}-0\right) \\
\therefore x_{2}=\frac{350}{2000}=0.175 \mathrm{~m}
\end{gathered}
$$

* for non-linear springs
* a hardening spring $\quad F=K\left(X_{2}-X_{1}\right)^{3}$
K : spring Constant $\left(N / m^{3}\right)$
* Dampers (dashpot)

damping Constant

for a linear damper

In viscous dampers, the generated force is due to pressure drop across a fluid resistor.

Ex.
A viscous damper element is initially at rest, with its left end constrained from motion. A constant force of 340 N is applied to the other end. What displacement has occured at the right end after this force has been applied for 1.5 sec if the viscous damping constant is $60 \mathrm{~N} .5 / \mathrm{mm}$??

$$
\begin{aligned}
& b=60 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{mm} \\
& x_{2}=? ?
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=? \\
& \text { after } t=1.5 \mathrm{sec}
\end{aligned}
$$

at $t=0 \quad x_{1}=0$ $x_{2}=0$

$$
\begin{gathered}
x_{1}^{\circ}=0 \\
=b\left(x_{2}^{\circ}-x_{1}\right) \\
340=60 x_{2}^{\circ} \\
x^{\circ}=\frac{d x}{d t} \\
\int d x=\int x_{2}^{\circ} d t \quad \therefore x
\end{gathered}
$$

$$
\begin{aligned}
\therefore x_{2} & =x_{2} \Delta t \\
& =5.667 * 1.5=8.5 \mathrm{~mm}
\end{aligned}
$$

couloumb friction represents the sliding friction between two surfaces. This friction depends on the coefficient of friction and the normal force that posses the two surfaces together.

* Discrete Mass
y \qquad x

Ex.
A Carge Container is being loaded onto an airplane. The container has a mass of 95 kg . Find its accel. if a force $\quad F_{p}=12 \mathrm{~N}$ is applied to push it. How far would the container move if the constant pushing force applied for 5 sec ? It's reasonable to neglect the force of friction action on the container because it is supported by rollers.

$$
\begin{aligned}
& \Sigma F=m x^{\circ} \\
& F_{p}=m x^{\circ} \\
& 12=95 x^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
12 & =95 x^{\circ} \\
\therefore \quad x^{\circ}=\frac{12}{95} & =0.126 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& m=95 \mathrm{~kg} \\
& F_{p}=12 \mathrm{~N} \\
& x=? ? \\
& t=5 \mathrm{sec} \\
& \text { Friction }=0 \\
& x^{\circ}=? ?
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
\frac{d x^{\circ}}{d t} & =x^{\circ} \\
\int d x^{\circ} & =\int x^{\circ 0} d t \\
x^{\circ} & =0.126 t+C_{1} \\
\text { at } t=0 \quad & \quad x_{1}=0 \quad
\end{aligned}
\end{aligned}
$$

$$
\text { at } t=0 \quad x=0
$$

$$
\begin{aligned}
\frac{d x}{d t} & =x^{0} \\
\int d x & =\int 0.126 t d t \\
x & =0.126 \frac{t^{2}}{2}+c_{2} \\
x & \therefore c_{2}=0
\end{aligned}
$$

$$
\therefore x=0.0632 t^{2}
$$

at $t=5 \mathrm{sec} \quad x=1.5789 \mathrm{~m}$

* Modeling Translational Systems
systems with Combinations of:-
* spring
* dissipation
* discrete mass elements.

EX.
A component of a photocopy machine is modeled as a viscous damper connected to a linear spring, as shown in figure. The mass of the part is judged to be negligible. The spring has a displacement $x_{2}(t)$ prescribed at its free end. Find the equations governing the displacement of the node at which the
spring and damper joint together and expression for the force $p(t)$ that must be applied to Cause the motion of the components.
sol

for node (2)
are $\frac{\text { masses }}{\text { neglected }}$

$$
\begin{gathered}
\sum F=m x^{\prime} \\
P(t)-F_{s}=0 \\
P(t)=F_{s} \\
\therefore P(t)=K\left(x_{2}-x_{1}\right)
\end{gathered}
$$

$$
\begin{equation*}
F_{s}-F_{d}=0 \tag{1}
\end{equation*}
$$

$$
k\left(x_{2}-x_{1}\right)=b x_{1} \quad \therefore b x_{1}+k x_{1}=k x_{2}
$$

$$
\begin{equation*}
\therefore \quad\left(\frac{b}{k} D+1\right) x_{1}=x_{2} \tag{2}
\end{equation*}
$$

as $x_{2}(t)$ is a known quantity
sub. in (2) to get $x_{1}(t)$
sub. in (1) to get $P(t)$

* Rotational Systems
* Rotational springs

- "clock spring"
- "fixed end shafts"
for linear torsional springs

deflection angle of twist (radians)

EX.
Find the torsional spring constant for a steel shaft that is 190 mm long and has a circular crosssection that is 8 mm diameter. The shear modulus of steel is 85 GPa.

$$
\begin{aligned}
& K=? ? \\
& L=190 \mathrm{~mm} \\
& d=8 \mathrm{~mm}
\end{aligned}
$$

sol

$$
\begin{align*}
& \theta=\frac{T L}{G J} \\
& K=\frac{T}{\theta}=\frac{G J}{L} \longrightarrow(1) \tag{1}\\
& J=\frac{\pi}{32} d^{4}=\frac{\pi}{32}(8)=128 \pi \mathrm{~mm}^{4}
\end{align*}
$$

sub. in (1)

$$
\begin{aligned}
K=\frac{85 * 10^{3} * 128 \pi}{190} & =179897.516 \\
& \simeq 180 * 10^{3} \mathrm{Nmm} / \mathrm{rad}
\end{aligned}
$$

* Rotational dampers

torsional damping Coefficient $\left(\frac{\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}}{\mathrm{rad}}\right)$
* Discrete Inertias

It is the resistance of an object to angular accel. It depends on the mass and the geometry of the object.

Ex.

$$
\rho=8.5 * 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

A uniform brass disc of 250 mm diameter and 125 mm length is supported on a shaft as shown in figure below. The disk is spinning at a constant angular rate of $42 \mathrm{rad} / \mathrm{sec}$ when a Constant breaking torque of 1.2 N.m is applied. What is the resulting angular accel?? what is the angular speed of the disk if the torque is held Constant for 7.5 sec ??
son

$$
\begin{aligned}
& \theta_{1}^{\circ}=42 \mathrm{rad} / \mathrm{sec} \\
& T_{b}=1.2 \mathrm{~N} \cdot \mathrm{~m} \\
& \theta^{\circ}=\text { ? } \\
& \theta^{\circ}=\text { ? at } \begin{array}{l}
t= \\
\\
\\
\\
\text { sec }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rho=\frac{m}{V} \\
& m=\rho V=\rho A l \\
&=8.5 * 10^{3} * \frac{\pi}{4}\left(\frac{250}{1000}\right)^{2} * \frac{125}{1000} \\
&=52.16 \mathrm{Kg} \\
& J_{x}=\frac{1}{2} m r^{2}=\frac{m d^{2}}{8}=\frac{52.16 *(0.250)^{2}}{8} \\
&=0.4075 \mathrm{~kg} \cdot m^{2} \\
& \frac{\sum M x}{}=J_{x} \ddot{\theta}^{\circ} \\
& \theta^{\circ}=\frac{T_{b}}{J_{x}}=\frac{-1.2}{0.4075}=\theta^{\circ} \\
&=2.945 \mathrm{rad} / \mathrm{sec}^{2} \\
& \theta_{2}=\theta^{\circ} \cdot d t \\
&=42-22.08 \\
& \theta_{2}=\theta_{1}-2.945 * 7.5 \\
&=19.92 \mathrm{rad} / \mathrm{sec}^{\circ} \\
& \theta_{2}=19.92 * \frac{60}{2 \pi}=190.2 \mathrm{rm}
\end{aligned}
$$

