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Similarly. it is not necessary to write component equations for the components
connected to current sources (either the positive or the negative node) to derive the
system response equations. The only purpose for writing these equations is to deter-
mine the voltage at the current source if you need to know it.

The component equations for the RLC components are written in terms of the
voltage drop across the component and the current through the component, using
an impedance relationship. The impedance is written with D-operator notation so
that differential equations can be derived directly.

In order to perform this type ofgcircuit analysis, we must first draw the circuit;
%el the voltages at each node, andassign a variable and a polarity for the current
in each component. Next, the cggnpoﬁnt equations are stated in impedance form,
and all of the significant node equations are written. The resulting equations are
“then reduced or manipulated to obtain algebraic or differential equations. This basic
procedure is employed throughout the chapter. ' :

4.3.2 Resistance Circuits

We seldom have to analyze purely resistive circuits; however, some that commonly
occur are worthwhile to mention.

Voltage Divider. One of the most basic resistive circuits is the so-called =
voltage dfvider circuit, formed by two resistors in series. In the circuit shown in Fig-
ure 4.2, a voltage e, is applied across two resistors, R; and R,, in series. Of interest is i
the voltage e, between the two resistors.

Figure 4.2 Voltage divider circuit.

The currents in the resistors are given by the basic resistance equations (volt-
age drop divided by resistance):

i = %Tfel 4.52) |
1
-0 N
=3 = 4.53)
The node equation at the e; node is
i, —ip=0 (4.54)

The two component equations for the resistors can be substituted into the node
equation:
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ey — € g
i S St Y 4.55
Fa- (4.55)

Rearrangement of this equation yields the following equation for the voltage divider:

R,

g, = ¢
! R +R,°

(4.56)
This equation should be memorized because you will most likely use it or a variation
of it many times.

Normalization of the preceding equation reveals that the output voltage e, is
simply a fraction of the supply voltage e,. Thus, the output voltage can vary from
zero (when R, is very small compared to R,) to ¢, (when R, is extremely large com-
pared to R,): ‘

1

. — (4.57)
R,

1+ =L
RZ

€ =

The voltage divider circuit is common in volume or gain control applications,
such as the volume control on a stereo, or the gain or offset in an amplifier circuit, in
which case it is common to use a potentiometer, or “pot,” to adjust the attenuation
or gain. In a pot#a wiper is used to make contact at variable locations along a fixed
resistor, as illustrated in Figure 4.3. In this case, R, + R, is a constant, but their ratio
can be adjusted.

€y

O 5.
Q

Figure 4.3 Illustration of a pot being
o used as a voltage divider.

Current Divider. Figure 4.4 illustrates a current divider, in which the current
from the current source is split between the load resistance R; and the shunt resistor R..

€

JORELE-

Figure 4.4 Current divider.

In this case, the node equation reveals that the source current i, divides be-
tween the two resistors:

iy =0+ ) ‘ (4.58)
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The component equations relate the actual voltage at the current source to the com-
ponent currents:

. €y
= 4.
=7 (4.59)
; € »
iy = R—OL (4.60)
Substituting these two component equations into the node equation yields
* R, + R,
T 4.
iy RR, € (4.61)
Again using the load current equation in this equation, we obtain the final result:

R 1
by, = = I = Iy
R.+R; L%+ R IR

(4.62)

Notice that if R, /R, is zero, then all of the source current will flow into the load re-
sistor. As R, /R, approaches infinity, no current will go to the load resistor. If R, is
equal to the source resistance, half of the current will go to the load.

Summing Circuit.  Figure 4.5 illustrates a summing circuit, in which the out-
put voltage e; is the sum of two input voltages, e; and e,

? €3

B
Figure 4.5 Voltage summing circuit.

The three component equations can be written in terms of the indicated volt-
ages and currents:

i = : (4.63)

Rl
f = 222 (4.64)
2 )
. e . ¥ .
i, = }‘el (4.65)
g

The node equation at the interconnection of the three Ctﬁﬁponents follows:

i+ =i, =0 (4.66)
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Substituting the component equations into the node equation, we obtain

ey — € e — ey e, v
ft e 2 4.67
R, R, R (467)

v
S

Rearrangement yields the following final result, which illustrates that the output
voltage is indeed the sum of the two applied voltages:

e, e,
e, = % : (4.68)
<1+&+&> (1+&+§2——>
R: Rg Ri  Rq

Notice that each voltage is attenuated from the applied value; for example, if all
three resistors were equal, then the output would be one-third of the applied volt-
age. In practice, R, should be smaller than R, and R, to help isolate the two input
voltages, and a greater attenuation will result.

Bridge Circuit. Bridge circuits are used in many sensing applications. In a
strain gauge circuit, the electrical resistance in one or more of the branches or legs of
the bridge varies with the strain of the metal or surface to which the gauge is rigidly
attached. This change in resistance causes a change in the voltage differential, which
can then be correlated to the strain. Figure 4.6 illustrates a typical bridge circuit.

Figure 4.6 Full bridge circuit.

The bridge is composed of two voltage dividers, so the differential voltage Ae
can be expressed as the difference in ¢, and ey:

Ae = ¢, — ¢, (4.69)

R, R,
Ae = e = 4.70
i {Rl +R, R+ Rje' S

If we observe that the resistance R, is a base value R, plus a small increment in re-
sistance, R, then we can state that e,

R, = R; + SR (4.71)
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It all four resistances are equal (R, = R, = R, = R} = R). then the bridge equa-

tion reduces to

o
oy “ToR¢

The equivalent resistance from e* to ground can be calculated by considering two

sets of series resistors operated in parallel:

(R + Ry)(R; + R,)
(R + Ry + (Ry + Ry

4.3.3 Resistance-Capacitance Circuits

(4.72)

Capacitors are generally used in circuits either to filter out high-frequency signals or
to store energy. In these cases, the settling time or the dynamic response is of interest.

RC Circuit.  Consider the simple RC circuit shown in Figure 4.7 in which a

resistor and capacitor are connected in series. Before analyzing this circuit, we 1
should determine what we want from the analysis. For example, we might be inter- {
ested in the voltage across the capacitor as a function of the supply voltage. If we §

identify the voltages and currents as shown, we can write the component and node

equations as follows.
component equations:

ic = CDe;  with e (0)
node equation:

Substituting the component equations into the node equation yields

e, — e
OR L = CDe;

Rearranging results in

RCDe, + ¢, = ¢,

(4.74)

(4.75) §

(4.76)

(4.77)

(4.78)

This equation is a classical differential equation in e, as a function of the input e, . It
shows that the system has a time constant r = RC, and a steady-state value e, equal
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to the supply voltage ¢. To solve the equation, the initial voltage e,(0) on the capac-
itor must be known.
The differential equation can also be written as a transfer function:

€o

" RCD + 1 (4.19)

&
This result could have been obtained from the voltage divider circuit equation by
treating the second resistance in the voltage divider as a capacitive impedance 1/CD.

Example 4.1  RC Filter

The circuit shown in Figure 4.7 has a resistance of 8 ohms; find the capacitance neces-
sary to give a settling time of 2.5 milliseconds.

|
' R
€y €

—_—

lr

0O =
a3 Figure 4.7 Resistor-capacitor circuit.

From the circuit, the time constant is 7 = RC. The settling time is 47; thus,
= 2.5/4 ms. Solving for the capacitance then yields
T 25/4107s

R = T Sohm = 78.125 nuf

C:

It is important to note that capacitors are not built with very precise tolerance:
The value of their capacitance might be £20% or worse. Therefore, don’t go to the dis-
tributor and ask for a 78.125 uf capacitor. You might find a 68 uf, a 100 uf, or a 220 uf
capacitor; but you won’t find a 78.125 uf capacitor. If you need the settling time to be
precisely 2.5 ms, then you will have to buy the closest capacitor that is smaller than the
desired value and add resistance to the circuit to get the settling time exact. Note fur-
ther that, since the capacitor has a wide tolerance band, you will have to trim the resis-
tance in each circuit to get your precise settling time. However, often the settling time
does not have to be exact, and a capacitor close to the desired value will be acceptable.

Dual RC Circuit. Figure 4.8 shows a circuit made up of two RC circuits. In
this case, we might be interested in the voltage e, as a function of the input voltage e,
The component equations are

R R
€ ! €, 2 e,

i(-,T s . -
= Figure 4.8 Dual RC circuit.




116 Chap. 4 flecitieal Systems

i = ~ (4.80
RI R, )
oy ic; = C\De;  with e (0) (4.81)
, & = &
Iy = - 4.82
e="F “482)
iy = C,De,  with e;(0) (4.83)
The node equations are
i = ic1 T igo (4.84)
iy = lcay (4.85)

If we substitute the component equations directly into the node equations and re-
arrange the result, we will have two equations involving only the voltages of the circuit:

[RiIC,D + (1 + Ri/Ry)le; = (Ri/Ry)e; + ¢ ' (4.86)

[R,C,D + 1]e, = e (4.87)

Since we are interested in e, as a function of ey, we can substitute the second equa- |
tion for e, into the first and rearrange to obtain

[R,C,R,C,D* + (R,C, + R,C, + R,Cy)D + 1]e;, = ¢ (4.88)

This is a second-order differential equation in e, as a function of the input ¢, As |
such, the required initial conditions are e,(0) and De,(0). Since we only know the ini- ;
tial charges on the capacitors, ¢,(0) and e,(0), we must determine the initial condi- |
tions of the differential equation. The component equation for the second capacitor
gives the derivative of e, as a function of the voltages e, and e,. Since this equation is
true for all time, including time ¢ = 0, the required initial condition of De, can be de-
termined:

e,(0) = known and ¢,(0) = known (4.89) |
_(0) — &(0)
De(@) = = R.C, (4.90) |

To avoid the difficulty of determining the initial conditions (which could be
very difficult for higher order circuits), the governing equations for this problem
could be formulated in state-space format. Notice from the original component
equations that the derivative of e, and the derivative of e, appear in the equations
for the capacitors. If we use ¢, and e, as state variables and use the two component
equations for the capacitors, we have

De, = % with e,(0) (4.91)
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De, = 52 with ,(0) (4.92)

Using the remaining two compgopent equations and the two node equations, we can
eliminate i¢, and i, in favor of ,, e, and e, to obtain

1 1 i 1
Doy = === oty 4 + 4.93
% <R1C1 chz)el RE“"RE™ ()
1
o (4.94)

- +
R,G, 2" R,G,°

In this case, the required initial conditions are e, (0) and e,(0), which are the known
initial charges on the capacitors.

4.3.4 Resistance-Inductance Circuits

Solenoids, relays, automotive ignition coils, and automotive fuel injectors are all ex-
amples of components that exhibit RL circuit behavior. The inductance comes from
the coil of wire that is used to make the magnetic circuit, and the resistance is usu-
ally due to the resistance of the small wire used in the coil.

Often, the solenoid is driven with a constant voltage source, in which case we
would be interested in the current in the inductor and how long it would take to
reach a steady state. For example, consider the circuit shown in Figure 4.9, which il-
lustrates a solenoid with an inductance L. and a parasitic resistance R.

Figure 4.9 Solenoid circuit.

ip = (4.95) -
i, = Lell) (4.96)
The node equation is quite simple:
ip =1, (4.97)

Since we want to derive an equation for I; as a function of the applied voltage e,, we
need to eliminate iz and e,. Substituting the node equation and the resistance equa-
tion into the inductance equation and rearranging yields
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L | 24
[E D+ 1Jl',< = % (4.98)

This equation reveals a system time constant of 7 = L/R and a steady-state current
of ey/R. '

Example 4.2  Solenoid Coil Response

A coil for a solenoid valve has a resistance of 100 ohms and an inductance of 6 mh. Cal-
culate the time constant, settling time, and current required from a 24 volt source. ’
The time constant is given by the previous equation:

L 0.006 h
T= R 100 obm 0.06 ms

- The settling time is 47 or 0.240 ms. The steady-state current required is

24 volt

= m =0.24 amp

The power required for this solenoid valve is almost 6 watts. 4

If we drive the RL solenoid of Figure 4.9 with a voltage source that has an as-
sociated source resistance R, the situation is described by the circuit shown in Fig-
ure 4.10.

Figure 410 High-voltage drive for
RL circuit.

The component equations are

irg = ]; (4.99)
0
gy = el}; - (.100)
1
i, = L% | (4.101)
The node equations are ‘
b = Iy C(4.102)

e, 5 B (4.103)
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Starting with the inductor equation, using the two resistor equations and the two
node equations, and simplifying yields

E } 1
D tlli,=——e
[Ro + R‘Y‘D (R, + Ry (4.104)

Notice from this equation that the time constant is now L/(R, + R,) and the steady-
state current is ep/(R, + R,). If we were to increase the voltage and use a relatively
high Ry, then the time constant could be improved (reduced) and the steady-state
current would remain the same, resulting in a faster solenoid actuation time. The
purpose of this approach is to drive the solenoid with a constant current source, in
which case the electrical part of the actuation time would be very fast.

4.3.5 Resistance-Inductance-Capacitance Circuits

Even though simple passive RC or RL electrical circuits (such as that of Figure 4.8)
can be represented by second or higher order differential equations, such circuits do
not exhibit resonance or overshoot, nor do they induce oscillations; in other words,
the roots to their characteristic equation are not complex. Complex roots are found
for circuits that have a combination of R, L, and C components. Tuning circuits, sig-
nal filters, and similar circuits use inductors and capacitors along with resistors.

Series RLC Circuits. The classical RLC circuit is shown in Figure 4.11.

e R ¢ L e,

AMA—— 200 ——
— —»iLi

l c
iCT Figure 4.11 Series RLC circuit.

The component equations for this circuit are

iy = 60; i (4.105)
i, = elL_D 2 with i, (0) (4.106)
ic = CDe,  with e,(0) (4.107)
The node equations are
iy =i, (4.108)
i =i, (4.109)

Substituting the component equations into the node equations and eliminating e,
yields the differential equation for ¢, as a function of ¢
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[LCD? + RCD + )¢, = ¢, (4.110)

This is a classical second-order differential equation, as discussed in section E.3 of
Appenilix E. The solution of Eq. (4.110) requires the initial conditions on e, and De,,
which in turn would require some manipulation of the component and node equa-
tions, since we know i, (0) and e,(0). The capacitor equation gives an expression for
De,, and by using the second node equation, we observe the following:

,(0) = known and i, (0) = known (4.111)
1
Dey(0) = = i,(0) (4.112)

This system can be put into the state-space form by noting from the compo-
nent equations that the inductor current i, and the capacitor voltage e, are differen-
tiated; therefore, they can be used as state variables. Using the component equations
for the inductor and the capacitor, and substituting the resistance equation and the
node equations into the L and C component equations, yields the following state-
space differential equations:

. R . 1 1
Di, = _Z iy = —Eez s z e, (4.113)
1.
DGZ = E 193 (4'114)

The initial conditions are the natural initial conditions, i, (0) and e,(0).

Example 4.3  RLC Circuit
A series RLC circuit has an inductance L = 1 mh and a capacitance C = 10 uf. Calcu-
late the resistance R required to obtain a damping ratio of 0.707.

From the previous ditferential equation for this circuit, we can find the damping
ratio and natural frequency as follows (see Table E-3):

4 1
2= =RC and = ——
w, “n = NTLC
Thus, the resistance is
_2L
C 0.001 s ol
R=W_7g\[_2x0707 Szlm = 14.14 ohms
10 X 10
ohm

Again, you are not going to buy a resistance of 14.14 ohms; and the variance on
the capacitance and inductance are so large that each circuit will require a different
value of resistance to achieve a damping ratio of exactly 0.707. Therefore, you will have
to settle for a damping ratio around 0.707 or trim the refdgtance for each circuit. You
should opt tor the first choice. due to the cost of trimming each circuit and the fact that
the circuit responses for damping values around 0.707 are not much different from
cach other.
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Figure 4.12 Parallel RLC circuit.

Parallel RLC Circuits. The inductor and capacitor are quite often in paral-
lel in a circuit, as illustrated in Figure 4.12. The component equations for this cir-
cuit are

iy =2 ; a0 (4.115)
; e S
jj = ﬁ with i, (0) (4.116)
ic = CDe;  with ¢ (0) (‘4.117)
The node equation is
ig =1, + i, (4.118)

Substituting the component equations into the node equation and rearranging
yields the classical differential equation for the voltage e, as a function of e

.y L
{LCD“ = ED +1le = E De, (4.119)

The state-space representation of this system is found by using i, and e, as
state variables. Substituting the resistor equation and the node equation into the in-
ductor and capacitor equations and rearranging, we arrive at

Di ! (4.120)
i =—e 4.
L= T4

| 1

E
D€1: "ELL—R—Cel +E€O

(4.121)

4.3.6 Summary of Passive Circuit Analysis Techniques

The steps tor deriving a classical differential equation from a circuit can be stated in
a simple procedure as follows:

1. Draw the schematic of the circuits, and identify each component with a
unique symbol (e.g., R, R,, C)).

2. Assign a variable to represent the voltage at each node in the circuit (e.g.,
€gs €], €9). ' "
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¢, = —Ge,  (amplifier equation) (4.124)

The node equation at the input port ¢, of the amplifier is

b= fpe o= 0 (4.125)
Substituting the component equations into the node equation and rearranging yields
Z.
-
A
e, = 5 (4.126)
1+

1 e,

If the impedance ratio Z,/Z, is small (compared to G, which is about 10°), then the
op-amp equation reduces to the classic result,

(4.127)
The reader should memorize this equation, since it is used often.

4.4.2 Typical Circuits

Table 4.1 illustrates a variety of uses for the op-amp with different impedances. No-
tice that resistive input and feedback impedances result in a voltage amplifier, a re-
sistive input and a capacitive feedback impedance results in an integrator, and a
capacitive input and a resistive feedback impedance results in a differentiator. Other
combinations of series and parallel impedances in the input and feedback imped-
ances result in a variety of interesting transfer functions.

The op-amp circuits described so far in this section can be used in more complex
circuits. The transfer functions for the op-amp circuits can be inserted in the circuit
analysis, since the op-amp acts as a voltage source that provides an isolation in volt-
ages. For example, consider an op-amp driving a solenoid, as shown in Figure 4.14. The
circuit analysis for this system can be divided into two parts, since the op-amp acts as
a voltage driver for the solenoid RL circuit.

Figure .14  Op-amp solenoid driver.
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TABLE 4.1 Op-Amp Circuits.

Description Transter Function Circuit
R
Sign Changer €, = —¢, R
el el/‘
Ry
- Ry
Amplifier L A R,
1
el el)
G
e, = = Il
Integrator ‘ ™ R I
T=RC e o_/\/\/\/_q>——<>——<b—o e,
R
e, =—1De,
Differentiator c
T=RC e o~—{ e,
® R
- e, ek L
= N C
Lag ¢ =G+ D " >——| }—*'
i
T=R,C e; o——/\/\/\,—»—@—o——o e,
R ¢ Rf
EDZ—FL(’TD-FU e; }-—4
Lead i
R
T=R,C e; e,
Ry
K@D — A —
Lead-Lag 7 R 1D+ D) .
or
Lag-Lead T ERG
7= RCy
€ €,
~(1D + 1) e, C R
B =
Bandwidth-Limited ! 7.D
Integrator 7= R,C B
TI = RIC el e”
... 0 R,
Bandwidth-Limited (n.0+ 1) R C
Differentiator T,= R,C J

7, = RC




	ch4_1
	ch4_2
	ch4_3
	ch4_4
	ch4_5
	ch4_6
	ch4_7
	ch4_8
	ch4_9
	ch4_10
	ch4_11
	ch4_12
	ch4_13
	ch4_14
	ch4_15
	ch4_16
	ch4_17

