6.3.1 Thermal Conduction Circuits

Example 6.1 Conduction in a Rod

Consider the system shown in Figure 6.12 in which a 0.25 inch diameter steel rod serves
as a structural member to locate a steam boiler and a water tank. The one foot iong rod

is insulated along its length to prevent convection from the surface: however, there can
be conduction along the axis of the rod. The boiler temperature is 220°F, and the water

tank is 100°F. The question is: How much heat will be transferred from the boiler to the
water supply tank?
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Solution For this problem, we can use the conduction equation, Eq. (6.7), and the
properties of the steel rod to obtain

Qh . rLr (Tb - Tw) (622)

From Table 6.2, we find that k, = 23 Btu/(hr ft °F). Therefore, the heat loss is
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This loss is quite small.



6.3.2 Thermal Conduction and Convection Circuits

Example 6.2 Plexiglas® plate

Consider the system shown in Figure 6.13, in which a plate of Plexiglas® that is a wall of a
container is exposed to an internal temperature 7, = 50°C on one side and is subjected to
free convection to room temperature, 25°C, on the other side. We want to know how much
heat is lost and what will be the outer surface temperature T,. The plate is 100 mm by 100
mm and is 6 mm thick. The thermal conductivity of Plexiglas® is 0.195 W/(m °K).

Solution  Since there is some very slight air motion on the outer surface. we will as-
sume that the convection coefficient is 20 W/(m? °K).
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Figure 6.13 Conduction and con-
vection from a plate.

The resistances for the conduction and convection can be calculated [rom Eq.
(6.5) and Eq. (6.15) as follows:

_ -
TN W ..\ N5 . (6.25)
e el %% W
0.195 —— 0.10 m 0.10 m
m °K
°K
R, = . . ) —— =500 (6.26)
" g5 it 010
m-

Therefore, the heat flow can be calculated as follows (note that A7 °C = AT °K):
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Q, = 3.1 watts = 1.05 Btu/hr (6.28)
The outer surface temperature can be calculated by first equating the heat flows
from the Plexiglas® and the convection and then solving for 7: T:"-P-K
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— kTs; '77:‘__ T, = 30.9°C + 9.5°C = 40.4°C (6.30)

““Iherefore, the outer surface temperature, is closer to the internal temperature, since
the resistance of the Plexiglas” is lower.



Example 6.3 Steam Pipe

Consider the system shown in Figure 6.14 in which steam at 220°F is flowing in a 6.0 foot
steel pipe (2.0 inch ID. 2.25 inch OD) with free convection to room temperature, 75°F.
We are considering whether we should insulate the pipe.

Solution The uninsulated pipe has three resistances to heat flow from the inside to the
outside: the convection on the inside of the pipe A; the conduction through the steel k;;
and the convection on the outside of the pipe A, These resistances can bhe calculated
from Eq. (6.15) and Eq. (6.10) as follows:
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Since the total thermal resistance is the sum of the individual resistances, the total heat
flow can be calculated as follows:



- (220 — 75)°F Btu/hr
(0.0127 + 000104 + .0566) °F

Q) (6.34)

Q,, = 2089 Btu/hr = 614 watts (6.35)

Now consider insulation that could be added to the outside of the pipe. If we use
a wrap that has 0.50 inch thickness (3.25 OD, 2.25 ID) and a thermal conductivity of
0.06 Btu (hr ft °F), the resistance is
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Since the resistances are in series, they are additive, and the resulting heat transfer can
be calculated as follows:

0. = (220 - 75)°F Btu/hr
=1 (0.0127 + 0.000104 + 0.0566 + 0.1626)°F

(6.37)

0, = 625 Btu/hr = 184 watls (6.38)
We note thut the insulation provides a 70% reduction in heat loss.
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6.4.1 Single-Lumped Capacitance Modeling

Many applications in engineering in which the heat capacity is obviously significant
can be treated by the single-lumped capacitance analysis technique. In these cases,
the Biot number is small.

Example 6.4 Watermelon Warming

Suppose that we are interested in predicting how long a watermelon, such as the one |
depicted in Figure 6.16, will maintain its temperature at a picnic. A 4 kg watermelon %
was initially cooled to 5°C, but is exposed to 30°C with free convection at the picnic.
How long will it take to get to 63% of the temperature rise from 5°C to 30°C; ie; 10

20.75°%C2
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” Figure 6.16 Watermelon-warming

N Surluce area, A problem.

Selution  The mside of a watermelon is basically water and so should have a specific
heat about equal to that of water. Therefore, we will assume that the specific heat C_ig
- 4200 J/(kg"C) and the density is 1000 kg/m*. With free convection, & will be about 10
W/(_nl-_f’d(;.) Based upon the mass and density of the watermelon, the diameter of the wa-
termelon is 0.20 m, and the surface area of the watermelon is approximately 0.12 m?
Thc first thing to do is calculate the Biot number. The thermal L(d);Ldac;l:'l?y -of
water 1s 0.6 W/(m°C), so

W 020m
10—
AF :&— nr‘HC 6 ___OS
b k U 6 W = i 47 (6-41)
“m°C

Although thi§ Biot number is above 0.1, we still want to use a single-lumped capaci-
tance model just to get a good estimate of time.

The mass of the melon acts as a thermal capacitor. From Eq. (6.21), the heat
transfer from the capacitor is

dT.
=CM—
0u=CM,

(6.42)

To solve this problem, we must equate the heat transfer released by the thermal capac-
itance to the convection heat transfer:

Q, = MC,DT, = hA(T, — T.,) (6.43)



Equation (6.43) can be rearranged to produce a differential equation in 7, namely,

(D + )T, =T, (6.44)
where
g (6.45)
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This 1s a first-order differential equation with a time constant of 7. The system will reach
03% ol its response in one time constant. Using the carlier-given numerical values, we
can calculate the time constant as follows:
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Therefore, it will take 2.6 hours for the wh?ermelon to warm up to 20.75°C.






