Alexandria Higher Institute of Engineering & Technology (AIET)		
Mechatronics Engineering Department		4 th Year
EME 401	Mechanics of machines	Final, Jan.,23,2010
Examiners:	Dr. Rola Afify and committee	Time: 3 hour

Answer the following questions:

Question (1)

Determine the number of degrees of freedom for the following:

Question (2)

The crank OA turns uniformly at 150 rpm and is pinned at A to rod AB. The point C in the rod is guided in the circular path with D as center and DC as radius. The dimensions of various links are:

OA = 150 mm; AB = 550 mm; AC = 450 mm; DC = 500 mm; BE = 350 mm.

Determine the velocity of the ram E for the given position of the mechanism.

Calculate the rubbing velocity at joint

B if the joint radius = 5 mm. All

dimensions are in mm.

Question (3)

For the shown engine mechanism, find the motor power at (O) required to derive it if the piston speed at this configuration is 0.5 m/sec, piston weight = 10 N and a resisting force acting on the piston is 50 N. assume the coefficient of friction on the piston is $\mu = 0.1$ OA = 80 mm, AB = 250 mm, OB = 280 mm (use scale 1 cm = 40 mm) (Hint: draw the velocity polygon with scale 1 cm = 0.1 cm/sec)

Question (4)

I) Specify, using neat sketches, the types of followers.

II) A cam drives a roller reciprocating follower with radius of 10 mm in the following manner:

During the first 120° rotation of the cam, the follower moves outwards through a distance of 20 mm with constant acceleration motion. The follower dwells during next 30° of cam rotation. During next 120° of cam rotation, the follower moves inwards with cycloid motion. The follower dwells for the next 90° of the cam rotation.

The minimum radius of the cam is 25 mm. Draw the profile of the cam.

Question (5)

- I) Sketch the terminology used in gears.
- II) In the reverted epicyclic gear train, the arm A carries two gears B and C and a compound gear D-E. The gear B meshes with gear E and the gear C meshes with gear D. The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed and direction of gear C when gear B is fixed and the arm A makes 100 rpm clockwise.

Question (6)

A constant torque motor of 3 kW is used to drive a machine has a resisting torque as shown in figure. If the mean speed is 300 rpm, find the Inertia of the wheel to keep maximum speed variation of 3%.

