	Alexandria Higher Institute of Engineering \& Technology (AIET)		
	Mechatronics Engineering Department	$4^{\text {th }}$ Year	
	EME 401	Mechanics of machines	Final, Jan.,23,2010
	Examiners:	Dr. Rola Afify and committee	Time: 3 hour

Answer the following questions:

Question (1)

Determine the number of degrees of freedom for the following:
(A)

Question (2)

The crank OA turns uniformly at 150 rpm and is pinned at A to rod AB. The point C in the rod is guided in the circular path with D as center and DC as radius. The dimensions of various links are:
$\mathrm{OA}=150 \mathrm{~mm} ; \mathrm{AB}=550 \mathrm{~mm}$; $\mathrm{AC}=450 \mathrm{~mm} ; \mathrm{DC}=500 \mathrm{~mm}$; $\mathrm{BE}=350 \mathrm{~mm}$.
Determine the velocity of the ram E for the given position of the mechanism.
Calculate the rubbing velocity at joint B if the joint radius $=5 \mathrm{~mm}$. All dimensions are in mm .

Question (3)

For the shown engine mechanism, find the motor power at (O) required to derive it if the piston speed at this configuration is $0.5 \mathrm{~m} / \mathrm{sec}$, piston weight $=10 \mathrm{~N}$ and a resisting force acting on the piston is 50 N . assume the coefficient of friction on the piston is $\mu=0.1$
$\mathrm{OA}=80 \mathrm{~mm}, \mathrm{AB}=250 \mathrm{~mm}, \mathrm{OB}=280 \mathrm{~mm}$ (use scale $\underline{1 \mathrm{~cm}=40 \mathrm{~mm} \text {) }) ~}$
(Hint: draw the velocity polygon with scale $1 \mathrm{~cm}=0.1 \mathrm{~cm} / \mathrm{sec}$)

Question (4)

I) Specify, using neat sketches, the types of followers.
II) A cam drives a roller reciprocating follower with radius of 10 mm in the following manner:

During the first 120° rotation of the cam, the follower moves outwards through a distance of 20 mm with constant acceleration motion. The follower dwells during next 30° of cam rotation. During next 120° of cam rotation, the follower moves inwards with cycloid motion. The follower dwells for the next 90° of the cam rotation.
The minimum radius of the cam is 25 mm . Draw the profile of the cam.

Question (5)

I) Sketch the terminology used in gears.
II) In the reverted epicyclic gear train, the arm A carries two gears B and C and a compound gear D-E. The gear B meshes with gear E and the gear C meshes with gear D . The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed and direction of gear C when gear B is fixed and the arm A makes 100 rpm clockwise.

Question (6)

A constant torque motor of 3 kW is used to drive a machine has a resisting torque as shown in figure. If the mean speed is 300 rpm , find the Inertia of the wheel to keep maximum speed variation of 3%.

