	ATE T	Alexandria Higher Institute of Engineering & Technology (AIET)					
		Industrial De	partment	2 nd Year			
		ME251	Fluid Mechanics	Final, Jan., 16, 2012			
		Examiners:	Dr. Rola Afify and committee	Time: 3 hours			

Answer the following questions: Question one (12 marks)

- a) Define: Kinematic viscosity Vapour pressure of liquids.
- b) Mention Newton's law of viscosity, with declaring its parameters.
- c) Let two layers of fluid be dragged along the motion of an upper plate as shown. The bottom plate is stationary. The top fluid puts a shear on the upper plate, and the lower fluid puts a shear on the bottom plate. Determine the ratio of these two shear stresses.

Question two (12 marks)

- a) Prove that the pressure changes in the vertical direction.
- b) For the inclined tube manometer shown in figure, the pressure in pipe A is 10 kPa. The fluid in both pipes A and B is water. The manometer fluid is mercury ($\gamma = 13.6$). What is the pressure in pipe B.

c) Water from a large reservoir is discharged to atmosphere through a 100 mm diameter cast iron pipe 450 m long. The entry from the reservoir to the pipe is sharp and the outlet is 12 m below the surface level in the reservoir. Calculate the discharge.

Question three (12 marks)

- a) Compare between Positive displacement pumps and Dynamic head pumps. Also, name and sketch example for each type.
- b) Calculate the weight of the oil leaks from a 3 cylinder piston pump has the following specifications:
 - i. Rotating at 120 rpm.
 - ii. The piston has a diameter of 4 cm.
 - iii. Stroke 6 cm.
 - iv. The shaft power is 2.75 hp.
 - v. Mechanical efficiency 89 %.
 - vi. Specific gravity of oil 0.81.
 - vii. Delivery pressure 49.6 bar.
 - viii. Suction pressure 0.4 bar.

Question Four (12 marks)

a) Explain how to avoid cavitation in the installed pumps.

٠,	recontinugar pump has the tene wing performance.						
	$Q(m^3/hr)$	0	15	30	45	60	75
	hm (m)	75	72	65	53	38	19
	η (%)	0	43	69	73	65	49

b) A centrifugal pump has the following performance:

When this pump is used in a system where the difference between delivery and suction levels (h_{st}) is 42 m, it gives a discharge of 47 m³/hr.

Calculate the discharge and shaft power of the pump when (h_{st}) decreases to 35 m.

Question Five (12 marks)

- a) What are the components of the hydraulic systems?
- b) Draw a complete hydraulic circuit used to rotate a hydraulic motor with a controllable velocity. This circuit contains:
 - i. Vented reservoir. ii. Variable speed Hydraulic pump.
 - iii. Electric motor. iv. Filter. v. Check valve
 - vi. Relief valve. vii. Flow control valve. viii. Hydraulic motor.
 - ix. Directional control valve two chambers four ports using solenoid control.