COLLEGE OF ENGINEERING \& TECHNOLOGY
Department : MECHANICAL \& MARINE ENG. DEP.
Lecturers : Teaching Staff
Course : Machine Design I
Course No. : ME 356
Marks: 40
Date : 14/1/2016
Time : 2:00-4:00

FINAL EXAMINATION PAPER

1- The cutter of a broaching machine is pulled by square threaded screw of 55 mm external diameter and 10 mm pitch. The operating nut is 70 mm in height. The collar takes the axial load of 50 kN on a flat surface of 60 mm and 90 mm internal and external diameters respectively. If the coefficient of friction is 0.15 for all contact surfaces on the nut and the collar, determine the power required to rotate the power screw when the cutting speed is $6 \mathrm{~m} / \mathrm{min}$. Also, find the efficiency of the screw and the bearing stress on the threads. (10 marks) $\quad d_{m c}=\left(\frac{d_{o c}+d_{i c}}{2}\right)$

$$
v=N(r p m) * p, \quad \sigma_{b r}=-\frac{2 F}{\pi d_{m} n_{t} p} \quad \text { and } \quad \mathrm{T}=\mathrm{W}\left[\mathrm{r}_{\mathrm{m}}\left(\frac{\mathrm{~L}+\pi \mu \mathrm{d}_{\mathrm{m}} \sec \alpha}{\pi \mathrm{~d}_{\mathrm{m}}-\mu \mathrm{L} \sec \alpha}\right)+\mu_{\mathrm{c}} \mathrm{r}_{\mathrm{mc}}\right]
$$

2- A bracket as shown in figure 1 carries a load of 10 KN . Find the size of the weld if the allowable shear stress is not to exceed 80 MPa . ($\mathbf{1 0}$ marks)

$$
\begin{aligned}
& \mathrm{z}=\mathrm{b} / 2 \\
& - \\
& \mathrm{y}=\mathrm{a} / 2 \\
& \mathrm{I}_{\mathrm{u}}=\mathrm{ba}^{2} / 2 \\
& \mathrm{~J}_{\mathrm{u}}=\mathrm{b}\left(3 \mathrm{a}^{2}+\mathrm{b}^{2}\right) / 6 \\
& \mathrm{~A}_{\mathrm{w}}=1.414 \mathrm{hb} \\
& \mathrm{~h}=\text { weld thickness }
\end{aligned}
$$

Figure 1.

3- Two steel compression coil springs are to be nested. The outer spring has an inside diameter of 38 mm , a wire diameter of 3 mm and 10 active coils. The inner spring has an outside diameter of 32 mm , a wire diameter of 2.5 mm and 13 active coils. The two springs of the assembly have the same free length. If the assembly is loaded by an axial force of 50 N and the modulus of rigidity (shear modulus) is 80 GPa ., calculate:
a- The spring rate of each spring.
b- The deflection of the assembly.
c- The shear stress on each spring. ($\mathbf{1 0}$ marks)
$\mathrm{C}=\frac{\mathrm{D}}{\mathrm{d}}, \mathrm{K}_{\mathrm{B}}=\frac{4 \mathrm{C}+2}{4 \mathrm{C}-3}, \tau=\mathrm{K}_{\mathrm{B}} \frac{8 \mathrm{FD}}{\pi \mathrm{d}^{3}}, \quad y=\delta=\frac{8 F D^{3} N}{d^{4} G}$
OR

$$
\tau=K_{\mathrm{w}} \frac{8 F D}{\pi d^{3}}, \quad \mathrm{~K}_{\mathrm{w}}=\frac{4 \mathrm{C}-1}{4 \mathrm{C}-4}+\frac{0.615}{\mathrm{C}},
$$

MPC6/1-2

4- Determine the size of the foundation bolts for a 50 KN pillar crane of figure 2 , assuming that the base is of a square shape and there are 3 bolts in each row. The dimensions are in meters and the allowable tensile stress of bolts material is 120 MPa . ($\mathbf{1 0}$ marks)

Figure 2.

