Model answer of summer course final exam Aug., 18, 2013

Question 1:

1. Express each of the three forces acting on the bracket in Cartesian vector form with respect to the x and y axes. Determine the magnitude and direction Θ of F_{1} so that the resultant force is directed to the positive x^{\prime} axis and has a magnitude of $\mathrm{F}_{\mathrm{R}}=600 \mathrm{~N}$.

Solution

$F_{1}=\left\{F_{1} \cos \theta i+F_{1} \sin \theta \mathrm{j}\right\} \mathrm{N}$
$F_{2}=\{350 \mathrm{i}\} \mathrm{N}$
$F_{3}=\{-100 \mathrm{j}\} \mathrm{N}$

Require,

$F_{R}=600 \cos 30^{\circ} \mathbf{i}+600 \cdot \sin 30^{\circ} \mathbf{j}$
$\mathrm{F}_{R}=\{519.6 \mathrm{i}+300 \mathrm{j}\} \mathrm{N}$
$\mathrm{F}_{\mathrm{R}}=\mathbf{\Sigma} \mathbf{F}$

Equating the \mathbf{i} and \mathbf{j} components yields:

$519.6=F_{1} \cos \theta+350$
$F_{1} \cos \theta=169.6$
$300=F_{1} \sin \theta-100$
$F_{1} \sin \theta=400$
$\theta=\tan ^{-1}\left[\frac{400}{169.6}\right]=67.0^{\circ}$
Ans

$$
F_{1}=434 \mathrm{~N}
$$

Ans

Question 2:

2. Determine the stretch in springs $A C$ and $A B$ for equilibrium of the $2-\mathrm{kg}$ block. The springs are shown in the equilibrium position.

Solution

$$
\begin{aligned}
& F_{A D}=2(9.81)=x_{A D}(40) \\
& x_{A D}=0.4905 \mathrm{~m} \\
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad F_{A B}\left(\frac{4}{5}\right)-F_{A C}\left(\frac{1}{\sqrt{2}}\right)=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad
\end{aligned}
$$

Ans

$2(9.81) N$

$$
\begin{aligned}
& F_{A C}=15.86 \mathrm{~N} \\
& x_{A C}=\frac{15.86}{20}=0.793 \mathrm{~m} \\
& F_{A B}=14.01 \mathrm{~N} \\
& x_{A B}=\frac{14.01}{30}=0.467 \mathrm{~m}
\end{aligned}
$$

Ans

Ans

Question 3:

3. The jib crane is subjected to three coplanar forces and a moment. Replace this loading by an equivalent resultant force and specify where the resultant's line of action intersects the boom BC measured from B.

Solution

Question 4:

4. A force of 150 N acts on the end of the beam. Determine the magnitude and direction of the reaction at the pin A and the tension in the cable BC

Solution

$$
\Sigma M_{A}=0+
$$

$$
150 * 10-T_{*} \frac{4}{5} * 3-T_{*} \frac{3}{5} * 2=0
$$

$$
\Rightarrow 1500-T\left(\frac{12}{5}+\frac{6}{5}\right)=0
$$

$$
\therefore T=416.67 \mathrm{~N}
$$

$\sum F_{x}=0 \rightarrow$
$416.67 * \frac{4}{5}-A_{x}=0 \Rightarrow A_{x}=333.33 \mathrm{~N}$
$\sum F_{y}=0+4$

$$
-150+416.67 * \frac{3}{5}-A_{y}=0 \Rightarrow A_{y}=100 \mathrm{~N}
$$

Question 5:

5. Calculate the force in each member of the loaded truss. Specify whether the members are in tension or in compression

Solution

$$
\left.\Sigma M_{A}=0^{\nabla}\right)
$$

$-6 * 4-8 * 6+D_{y} * 12=0$ $\therefore D_{y}=6 \mathrm{~N}$

\therefore Joint D:
$\Sigma F_{y}=0$
$6+F_{D C} * \frac{4}{5}=0$
$\therefore F_{D C}=-7.5 \mathrm{kN}$

$$
\Rightarrow F_{D C}=7.5 \mathrm{kN}(\mathrm{cs}
$$

$$
\begin{aligned}
& \Sigma F_{X}=0 \\
&-F_{D E}-\left(-7.5 * \frac{3}{5}\right)=0 \\
& \Rightarrow F_{D E}=4.5 \mathrm{kN} \mathrm{(T)}
\end{aligned}
$$

Joint c:

$\sum F_{x}=0$
$-F_{C B}-F_{C E} * \frac{3}{5}-7.5 \times \frac{3}{5}=0$
$\therefore \quad F_{C B}=-4.5-F_{C E} \times \frac{3}{5}$
$\sum F_{y}=0$

$$
7.5 * \frac{4}{5}-F_{C E} * \frac{4}{5}=0
$$

$\therefore F_{C E}=7.5 \mathrm{kN}(T)$
$\therefore F_{C B}=9 \mathrm{kN}(c)$

Joint E:

$\sum F_{y}=0 \quad 7.5 * \frac{4}{5}+F_{E B^{*} \frac{4}{5}}=0$
$\therefore F_{E B}=-7.5 \mathrm{kN}$

$$
\sum F_{x}=0 \quad \begin{aligned}
& 4.5+7.5 * \frac{3}{5}-\left(-7.5 * \frac{3}{5}\right)-F_{E A}=0 \\
& \therefore F_{E A}=13.5 \mathrm{kN}(T)
\end{aligned}
$$

Joint B:
$F_{8 B} * \frac{3}{5}$

$\sum F_{y}=0$

$$
7.5 * \frac{4}{5}-F_{B A} * \frac{4}{5}=0
$$

$\therefore F_{B A}=7.5 \mathrm{kN} \mathrm{(T)}$

