	Alexandria Higher Institute of Engineering \& Technology (AIET)		
	Industrial Department	$2^{\text {nd }}$ Year	
	ME251	Fluid Mechanics	Final, End-of-Semester-3 Exam, Aug., 17, 2013
	Examiners:	Dr. Rola Afify and committee	Time: 3 hours

Answer the following questions:

Question one (12 marks)

a) Discuss the relation between:

- Viscosity and Temperature for a certain fluid.

- Absolute, Atmospheric and gauge pressure.

b) The pressure of $1 \mathrm{~m}^{3}$ of a fluid is increased 10 to 20 bar at a constant temperature, calculate the final volume of the fluid in the following cases:-
a. The fluid is an ideal gas.
b. The fluid is water $\left(\mathrm{k}=2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$.

Use the results to explain the main difference between liquids and gases.

Question two (12 marks)

a) A diver is working at a depth of 18 m under sea water surface; calculate the pressure at this depth in gauge and absolute values if the specific gravity of sea water is 1.02.

```
\(*\) Page \(=W h=\gamma_{\text {wash }}=1.02 * 9800 * 18=179928 \mathrm{~Pa}\)
    Page \(=1.8 \mathrm{bar}\)
\(* P_{\text {abs }}=\) Pgaage \(+P_{\text {atm }}=1.8 * 10^{5}+1.013 * 10^{5}=281228 \mathrm{~Pa}\)
\[
\cong 2.8 \text { bar abs. }
\]
```

b) A rectangular tank (3 m long, 2 m wide, and 2.5 m high) contains oil of specific gravity $\gamma=0.9$. Calculate the magnitude, direction, and line of action of the pressure force on the following:
a. The sides of the tank.
b. The tank's bottom.

* To get Fides

$$
\begin{aligned}
& F_{\text {side }}=\omega_{\text {oil }} h * \frac{h}{2} * B \\
& F_{\text {Side }_{1}}=8820 * 2.5 * \frac{2.5}{2} * 2=55.125 \text { Newton } \\
& F_{\text {side } 2}=8820 * 2.5 * \frac{2.5}{2} * 3=82.687 .5 \text { Neuton } \\
& \text { to the sur Face and }
\end{aligned}
$$

Both of Fside 1 ? Fside 2 acting + to the sur Face and at $\frac{2.5 \mathrm{~m}}{3}$ From the Bo Ham.

* To get Fbottom:-

$$
\begin{aligned}
\text { Fbottom } & =\omega h * A * B \\
& =8820 * 2.5 * 2 * 3 \\
& =132,300 \text { Newton }
\end{aligned}
$$

Fbottom acts at the center of the surface and 1 onit.

Question three (12 marks)

a) Compare between Piezometer tube and U-tube with one leg enlarged.

b) Two water tanks A and B are connected with a cast iron pipe ($\varepsilon=0.25 \mathrm{~mm}$) 15 cm diameter and 800 m long has a coefficient of friction $(\mathrm{f}=0.025)$. Along the pipe, there are a fully opened gate valve $(k=1.2)$, three 45° bends (k for each $=0.8$) and four 45° bends (k for each= 0.6).
For sudden contraction $\mathrm{k}=0.5$ and enlargement $\mathrm{k}=1.0$.
i. Find the difference in levels between water surfaces in two tanks, so that a discharge of 60 lit/s flows from tank A to tank B.
ii. If the valve is partially closed to reduce the discharge to 60% of its initial value, keeping the same difference in levels, what will be the head lost in the value.
b)

I) $Q=60$ Litre $\mathrm{Bec}=60 \mathrm{~m}^{3} / \mathrm{sec}$

$$
\begin{aligned}
Q=A_{2} v_{2} & =60 * 10^{-3} \\
\frac{\pi}{41} *(0.15)^{2} v_{2} & =60 * 10^{-3} \\
V_{2} & =3.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
h_{\text {lesses } A \rightarrow B}=\begin{gathered}
h_{\text {sudden }}+h_{\text {friction }}+h_{\text {value }}+3 h_{\text {bend ion }}+4 h_{\text {bend }} \\
\\
+h_{\text {sudden }}
\end{gathered}
$$

Enlargement

$$
\begin{aligned}
= & 0.5 \frac{v_{2}^{2}}{2 g}+f \frac{L}{d} \frac{v_{2}^{2}}{2 g}+K_{V} \frac{v_{2}^{2}}{2 g} \\
& +3 K_{\text {bend }} \frac{v_{2}^{2}}{2 g}+4 K_{\text {bend }}^{2} \frac{v^{2}}{2 g}+1 * \frac{v_{2}^{2}}{2 g}
\end{aligned}
$$

$$
\begin{aligned}
& {\left.\begin{array}{l}
\text { Losses } A \rightarrow B= \\
\\
\\
\\
\end{array}+4 * 0.6+1\right]}_{2 g}\left[0.5+\frac{0.025 * 800}{0.15}+1.2+3 * 0.8\right. \\
& h_{\text {losses }_{A \rightarrow B}=}=\frac{(3.4)^{2}}{2 * 9.8} * 140.3 \\
& h_{\text {Losses }_{A \rightarrow B}} \cong 83 \mathrm{~m}
\end{aligned}
$$

So the difference in level bet w water surface In two tanks is 83 m
ii) $Q_{\text {new }}=0.6 Q \Rightarrow A_{\text {U new }}=0.6 A U$

$$
V_{\text {new }}=0.8 * 3.4=2.04 \mathrm{~cm} / \mathrm{sec}
$$

Req: $h_{\substack{\text { Loss } \\ \text { value }}}=$?!

$$
\begin{aligned}
& +4 * \operatorname{c} \cdot 6 * \frac{v_{\text {new }}^{2}}{2 g}+1 * \frac{V_{\text {new }}^{2}}{2 g} \\
& h_{\substack{\text { closure } \\
\text { val }}}=83-\frac{(2.04)^{2}}{2 g}\left[0.5+\frac{0.025 * 800}{0.15}+3 * 0.8+4 * 0.6+1\right] \\
& =83-29.6 \\
& h_{\text {Lestue }}=53.4 \mathrm{~m}
\end{aligned}
$$

Question Four (12 marks)

a) Compare between vane pump and axial flow pump.

b) Explain how to avoid cavitation for positive displacement pump.

c) A three cylinders piston pump, having ram 30 cm diameter by 60 cm stroke, is required to lift 80 liter of water per second against a static head of 85 m . The friction loss in the suction pipe is 1.2 m and in delivery pipe is 12 m . The water velocity is $1 \mathrm{~m} / \mathrm{s}$. The mechanical efficiency of the pump $\left(\eta_{m}\right)$ is 90% and the volumetric efficiency $\left(\eta_{v o l}\right)$ is 98%. Calculate the speed at which the pump should run and the power required to drive it.
c)

Piston pump S three cylinders $S S=60 \mathrm{~cm}=0.6 \mathrm{~cm}$ $D=30 \mathrm{~cm}=0.3 \mathrm{~m}$ S $h_{\text {st }}=85 \mathrm{~m}\left(Q=80 * 10^{-3}\right.$ $h_{L s}=1.2 \mathrm{~m}<h_{L d}=12 \mathrm{~m} \quad \int \quad v=1 \mathrm{~m} / \mathrm{sec}$

$$
\eta_{\text {mach }}=0.9<\eta_{\text {vol }}=0.98<N=? .1 \text { power }=? \text {. }
$$

- sole-

$$
Q_{\text {act }}=\eta_{\text {vol }} * \frac{\pi}{4} D^{2} * S * \frac{N}{\sigma_{0}} * \text { no. of cyLinders }
$$

$$
80 * 10^{-3}=0.98 * \frac{\pi}{4}(0.3)^{2} * 0.6 * \frac{N}{\sigma 0} * 3
$$

$$
N=38.5 \quad \text { r.p.m. }
$$

$$
=85+(12+1.2)+\frac{(1)^{2}}{2 * 9.8}
$$

$$
=98.25 \mathrm{~m}
$$

$$
P_{\text {over }}=\frac{w \mathrm{hp} Q}{\eta_{\text {mad }}}=\frac{9800 * 98.25 * 80 * 10^{-3}}{0.9}
$$

$$
=35.2 \text { watt }-
$$

Question Five (12 marks)

For the hydraulic circuit shown in figure:-
(2)

a) Write the name of each component.

b) What will happen to (6) when:-
i- the left solenoid in (5) is activated (draw the circuit).
ii- the right solenoid in (5) is activated (use different pen in the previous drawing).

