<u>Sheet (4)</u>

Belt drive

- 1- Find the power that can be transmitted from a 200 mm pulley to a 400 mm one. The two pulleys are 1.5 m apart. The small pulley rotates at 900 rpm and the belt is 50 x 5 mm. You may assume a coefficient of friction between the belt and pulley of 0.3 and the belt weight 11 kN/m³. Let $\sigma_{all} = 2$ MPa for belt material.
- 2- Find the number of V-belt required to transmit 2 kW from a motor running with 900 rpm and has a sheave diameter of 200 mm to 400 mm sheave 1.5 m apart. Assume μ = 0.3, W = 11 kN/m³, A = 140 mm², σ_{all} = 2 MPa, groove angle = 38°, service factor is unity.
- 3- Find the number of 80 mm² V-belts required to transmit 5 kW from a 200 mm sheave running with 900 rpm to another sheave 1 m apart with a reduction ratio of 3:1. The belt weight 11 kN/m³ and has $\sigma_{all} = 2$ MPa. You may assume $\mu = 0.3$ and the groove angle is 38°. The service factor is 1.2.
- 4- Find the maximum power and its corresponding belt speed that can be delivered by a 50 x 4 mm flat belt with a least angle of contact 2.5 rad. If the following specifications are given $\sigma_{all} = 2$ MPa, $\mu = 0.3$, W = 10.5 kN/m³.
- 5- Find the maximum power and its corresponding belt speed that can be transmitted through a V-belt drive. The drive specifications are:-
 - $\sigma_{all} = 2.5 \text{ MPa}$
 - Belt cross-section are = 80 mm^2
 - 3 belts are used
 - $\mu = 0.3, 2\beta = 38^{\circ}$
 - Belt weight 11 kN/m³
 - Minimum angle of contact = 2.5 rad
 - Motor sheave diameter is 200 mm