Chapter 1

Introduction

This book has been described by many writers as the “how-to guide for engineers
interested in computing turbulent flows.” This description is consistent with the
contents of the book in the following sense. While the text provides some dis-
cussion of the physics of turbulent flows, it is by no means a thorough treatise on
the complexities of the phenomenon. Rather, the discussion focuses on the most
significant aspects of turbulence that underlie the engineering approximations
introduced over the decades to facilitate affordable numerical computations.

In other words, the book presents as much of the physics of turbulence
as necessary to understand why existing modeling approximations have been
made—but no more. This is true because the theme of the book is the modeling
of turbulence, which begins with understanding the physics involved. However,
it also involves correlation of measurements, engineering judgment, a healthy
dose of mathematics and a lot of trial and error.

The field is, to some extent, a throwback to the days of Prandtl, Taylor, von
Karman and all the many other clever engineers who spent a good portion of their
time devising engineering approximations and models describing complicated

Figure 1.1: Pioneers of turbulence modeling,; from left Ludwig Prandtl (1875-
1953), Geoffrey Taylor (1886-1975) and Theodore von Kdarmdan (1881-1963).
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physical flows. The best efforts in turbulence modeling have been an attempt to
develop a set of constitutive equations suitable for application to general turbulent
flows, and to do it in as elegant and physically sound a manner as possible. These
three fluid mechanics pioneers helped establish a solid framework for several
generations of engineers to work in.

Turbulence modeling is one of three key elements in Computational Fluid
Dynamics (CFD). Very precise mathematical theories have evolved for the other
two key elements, viz., grid generation and algorithm development. By its nature
— in creating a mathematical model that approximates the physical behavior of
turbulent flows — far less precision has been achieved in turbulence modeling.
This 1s not really a surprising event since our objective has been to approximate
an extremely complicated phenomenon. Two key questions we must ask at the
outset are the following. What constitutes the ideal turbulence model and how
complex must it be?

1.1 Definition of an Ideal Turbulence Model

Simplicity combined with physical insight seems to have been a common de-
nominator of the work of great men like Prandti, Taylor and von Karman. Using
their work as a gauge, an ideal model should introduce the minimum amount
of complexity while capturing the essence of the relevant physics. This
description of an ideal model serves as the keystone of this text.

1.2 How Complex Must a Turbulence Model Be?

Aside from any physical considerations, turbulence is inherently three dimen-
sional and time dependent. Thus, an enormous amount of information is re-
quired to completely describe a turbulent flow. Fortunately, we usually require
something less than a complete time history over all spatial coordinates for every
flow property. Thus, for a given turbulent-flow application, we must pose the
following question. Jiven a set of initial and/or boundary conditions, how do we
predict the relevant properties of the flow? What properties of a given flow are
relevant is generally dictated by the application. For the simplest applications,
we may require only the skin-friction and heat-transfer coefficients. More eso-
teric applications may require detailed knowledge of energy spectra, turbulence
fluctuation magnitudes and scales.

Certainly, we should expect the complexity of the mathematics required for a
given application to increase as the amount of required flowfield detail increases.
On the one hand, if all we require is skin friction for an attached flow, a simple
mixing-length model (Chapter 3) may suffice. Such models are well developed
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and can be implemented with very little specialized knowledge. On the other
hand, if we desire a complete time history of every aspect of a turbulent flow,
only a solution to the complete Navier-Stokes equation will suffice. Such a
solution requires an extremely accurate numerical solver and may require use
of subtle transform techniques, not to mention vast computer resources. Most
engineering problems fall somewhere between these two extremes.

Thus, once the question of how much detail we need is answered, the
level of complexity of the model follows, qualitatively sf)eaking.I In the spirit
of Prandtl, Taylor and von Karman, the conscientious engineer will strive to use
as conceptually simple an approach as possible to achieve his ends. Overkill is
often accompanied by unexpected difficulties that, in CFD applications, almost
always manifest themselves as numerical difficulties!

1.3 Comments on the Physics of Turbulence

Before plunging into the mathematics of turbulence, it js worthwhile to first
discuss physical aspects of the phenomenon. The following discussion is not
intended as a complete description of this complex topic. Rather, we focus upon
a few features of interest in engineering applications, and in construction of a
mathematical model. For a more-complete introduction, refer to basic texts on
the physics of turbulence such as those by Hinze (1975), Tennekes and Lumley
(1983), Landahl and Mollo-Christensen (1992), Libby (1996) or Durbin and
Pettersson Reif (2001).

1.3.1 Importance of Turbulence in Practical Situations

For “small enough” scales and “low enough” velocities, in the sense that the
Reynolds number is not too large, the equations of motion for a viscous fluid have
well-behaved, steady solutions. Such flows are controlled by viscous diffusion
of vorticity and momentum. The motion is termed laminar and can be observed
experimentally and in nature.

At larger Reynolds numbers, the fluid’s inertia overcomes the viscous stresses,
and the laminar motion becomes unstable. Rapid velocity and pressure fluctua-
tions appear and the motion becomes inherently three dimensional and unsteady.
When this occurs, we describe the motion as being turbulent. In the cases of
fully-developed Couette flow and pipe flow, for example, laminar flow is assured
only if the Reynolds number based on maximum velocity and channel height or
pipe radius is less than 1500 and 2300, respectively.

I'This is not a foolproof criterion, however. For example, a complicated model may be required
to predict even the simplest properties of a very complex flow.
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Figure 1.2: Examples of turbulent motion. Upper left: a cumulus cloud; Upper
right: flow in the wake of a cylinder; Bottom: flow in the wake of a bullet
[Bottom photograph courtesy of Corrsin and Kistler (1954)].

Virtually all flows of practical engineering interest are turbulent. Flow past
vehicles such as rockets, airplanes, ships and automobiles, for example, is al-
ways turbulent. Turbulence dominates in geophysical applications such as river
currents, the planetary boundary layer and the motion of clouds (Figure 1.2).
Turbulence even plays a role at the breakfast table, greatly enhancing the rate at
which sugar and cream mix in a cup of coffee!

Turbulence matters even in applications that normally involve purely laminar
flow. For example, blood flow is laminar in the arteries and veins of a healthy
human. However, the presence of turbulence generally corresponds to a health
problem such as a defective heart valve.

Turbulent flow always occurs when the Reynolds number is large. For slightly
viscous fluids such as water and air, “large” Reynolds number corresponds to
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anything stronger than a tiny swirl, a small breeze or a puff of wind. Thus,
to analyze fluid motion for general applications, we must deal with turbulence.
Although vigorous research has been conducted to help discover the mysteries of
turbulence, it has been called the major unsolved problem of classical physics!
In the following subsections, we will explore some of the most important aspects
of turbulence.

1.3.2 General Properties of Turbulence

e Basic Definition. In 1937, von Karman defined turbulence in a presen-
tation at the Twenty-Fifth Wilbur Wright Memorial Lecture entitled “Tur-
bulence.” He quoted G. I. Taylor as follows [see von Karman (1937)]:

“Turbulence is an irregular motion whick in general makes its
appearance in fluids, gaseous or liquid, when they flow past
solid surfaces or even when neighboring sireams of the same
fluid flow past or over one another.”

As the understanding of turbulence has progressed, researchers have found
the term “irregular motion” to be too imprecise. Simply stated, an irregular
motion is one that is typically aperiodic and that cannot be described as
a straightforward function of time and space coordinates. An irregular
motion might also depend strongly and sensitively upon initial conditions.
The problem with the Taylor-von Karmén definition of turbulence lies in
the fact that there are nonturbulent flows that can be described as irregular.

Turbulent motion is indeed irregular in the sense that it can be described by
the laws of probability. Even though instantaneous properties in a turbulent
flow are extremely sensitive to initial conditions, statistical averages of
the instantaneous properties are not. To provide a sharper definition of
turbulence, Hinze (1975) offers the following revised definition:

“Turbulent fluid motion is an irregular condition of flow in
which the various quantities show a random variation with time
and space coordinates, so that statistically distinct average val-
ues can be discerned.”

To complete the definition of turbulence, Bradshaw [cf. Cebeci and Smith
(1974)] adds the statement that turbulence has a wide range of scales.
Time and length scales of turbulence are represented by frequencies and
wavelengths that are revealed by a Fourier analysis of a turbulent-flow
time history.

The irregular nature of turbulence stands in contrast to laminar motion,
so called historically because the fluid was imagined to flow in smooth



CHAPTER 1. INTRODUCTION

laminae, or layers. In describing turbulence, many researchers refer to
eddying motion, which is a local swirling motion where the vorticity can
often be very intense. Turbulent eddies of a wide range of sizes appear and
give rise to vigorous mixing and effective turbulent stresses (a consequence
of the “mixing” of momentum) that can be enormous compared to laminar
values.

e Instability and Nonlinearity. Analysis of solutions to the Navier-Stokes
equation, or more typically to its boundary-layer form, shows that turbu-
lence develops as an instability of laminar flow. To analyze the stability
of laminar flows, classical methods begin by linearizing the equations of
motion. Although linear theories achieve some degree of success in predict-
ing the onset of instabilities that ultimately lead to turbulence, the inherent
nonlinearity of the Navier-Stokes equation precludes a complete analytical
description of the actual transition process, let alone the fully-turbulent
state. For a real (i.e., viscous) fluid, mathematically speaking, the instabil-
ities result mainly? from interaction between the Navier-Stokes equation’s
nonlinear inertial terms and viscous terms. The interaction is very complex
because it is rotational, fully three dimensional and time dependent.

As an overview, the nonlinearity of the Mavier-Stokes equation leads to
interactions between fluctuations of differing wavelengths and directions.
As discussed below, the wavelengths of the motion usually extend all the
way from a maximum comparable to the width of the flow to a minimum
fixed by viscous dissipation of energy. The main physical process that
spreads the motion over a wide range of wavelengths is vortex stretching.
The turbulence gains energy if the vortex elements are primarily oriented
in a direction in which the mean velocity gradients can stretch them. Most
importantly, wavelengths that are not too small compared to the mean-
flow width interact most strongly with the mean flow. Consequently, the
larger-scale turbulent motion carries most of the energy and is mainly
responsible for the enhanced diffusivity and attending stresses. In turn,
the larger eddies randomly stretch the vortex elements that comprise the
smaller eddies, cascading energy to them. Energy is dissipated by viscosity
in the shortest wavelengths, although the rate of dissipation of energy is
set by the long-wavelength motion at the start of the cascade. The shortest
wavelengths simply adjust accordingly.

e Statistical Aspects. The time-dependent nature of turbulence also con-
tributes to its intractability. The additional complexity goes beyond the
introduction of an additional dimension. Turbulence is characterized by

2Inviscid instabilities, such as the Kelvin-Helmholtz instability, also play a role.
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random fluctuations thus mandating the use of statistical methods to an-
alyze it. On the one hand, this aspect is not really a problem from the
engineer’s viewpoint. Even if we had a complete time history of a turbu-
lent flow, we would usually integrate the flow properties of interest over
time to extract time averages, or mean values. On the other hand, as
we will see in Chapter 2, time-averaging operations lead to terms in the
equations of motion that cannot be determined a priori.

Turbulence is a Continuum Phenomenon. In principle, we know that the
time-dependent, three-dimensional continuity and Navier-Stokes equations
contain all of the physics of a given turbulent flow. That this is true follows
from the fact that turbulence is a continuum phenomenon. As noted by
Tennekes and Lumley (1983),

“Even the smallest scales occurring in a turbulent flow are
ordinarily far larger than any molecuiar length scale.”

Nevertheless, the smallest scales of turbulence are still extremely small
(we will see just how small in the next subsection). They are generally
many orders of magnitude smaller than the largest scales of turbulence, the
latter often being of the same order of magnitude as the dimension of the
object about which the fluid is flowing. Furthermore, the ratio of smallest
to largest scales decreases rapidly as the Reynolds number increases. To
make an accurate numerical simulation (i.e., a fully time-dependent three-
dimensional solution) of a turbulent flow, all physically relevant scales
must be resolved.

While more and more progress is being made with such simulations, com-
puters of the early twenty-first century have insufficient memory and speed
to solve any turbulent-flow problem of practical interest. To underscore the
magnitude of the problem, Speziale (1985) notes that a numerical simula-
tion of turbulent pipe flow at a Reynolds number of 500,000 would require
a computer 10 million times faster than a Cray Y/MP. While standard per-
sonal computers are comparable in speed to a vintage 1985 Cray Y/MP,
modern mainframe computers are still confined to simple geometries at
low Reynolds numbers. This is true because, as discussed in Chapter 8,
the number of numerical operations in such a computation is proportional
to Re%/4, where Re is a characteristic Reynolds number. However, the
results are very useful in developing and testing approximate methods.

Vortex Stretching. The strongly rotational nature of turbulence goes
hand-in-hand with its three dimensionality. The vorticity in a turbulent
flow is itself three dimensional so that vortex lines in the flow are non-
parallel. The resulting vigorous stretching of vortex lines maintains the
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Figure 1.3: Schematic of large eddies in a turbulent boundary layer. The flow
above the boundary layer has a steady velocity U, the eddies move at randomly-
fluctuating velocities of the order of a tenth of U. The largest eddy size (¥) is
comparable to the boundary-layer thickness (6). The interface and the flow
above the boundary is quite sharp [Corrsin and Kistler (1954)].

ever-present fluctuating vorticity in a turbulent flow. Vortex stretching is
absent in two-dimensional flows so that turbulence must be three dimen-
sional. This inherent three dimensionality means there are no satisfactory
two-dimensional approximations for determining fine details of turbulent
flows. This is true even when the average motion is two dimensional. The
induced velocity field attending these skewed vortex lines further increases
three dimensionality and, at all but very low Reynolds numbers, the vor-
ticity is drawn out intc a tangle of thin tubes or sheets. Therefore, most
of the vorticity in a turbulent flow resides in the smallest eddies.

e Turbulence Scales and the Cascade. Turbulence consists of a continuous
spectrum of scales ranging from largest to smallest, as opposed to a dis-
crete set of scales. In order to visualize a turbulent flow with a spectrum of
scales we often cast the discussion in terms of eddies. As noted above, a
turbulent eddy can be thought of as a local swirling motion whose charac-
teristic dimensi6n is the local turbulence scale (Figure 1.3). Altematively,
from a more mathematical point of view, we sometimes speak in terms of
wavelengths. When we think in terms of wavelength, we imagine we have
done a Fourier analysis of the fluctuating flow properties.

We observe that eddies overlap in space, large ones carrying smaller ones.
Turbulence features a cascade process whereby, as the turbulence decays,
its kinetic energy transfers from larger eddies to smaller eddies. Ultimately,
the smallest eddies dissipate into heat through the action of molecular
viscosity. Thus, we observe that, like any viscous flow, turbulent flows
are always dissipative.
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Figure 1.4: Laser-induced fluorescence image of an incompressible turbulent
boundary layer. Flow is from left to right and has been visualized with disodium
Sfluorescein dye in water. Reynolds number based on momentum thickness is 700.
[From C. Delo—Used with permission.]

e Large Eddies and Turbulent Mixing. An especially striking feature of
a turbulent flow is the way large eddies migrate across the flow, carrying
smaller-scale disturbances with them. The arrival of these large eddies
near the interface between the turbulent region.and nonturbulent fluid dis-
torts the interface into a highly convoluted shape (Figures 1.3 and 1.4).
In addition to migrating across the flow, they have a lifetime so long that
they persist for distances as much as 30 times the width of the flow [Brad-
shaw (1972)]. Hence, the state of a turbulent flow at a given position
depends upon upstream history and cannot be uniquely specified in
terms of the local strain-rate tensor as in laminar flow.

e Enhanced Diffusivity. Perhaps the most important feature of turbulence
from an engineering point of view is its enhanced diffusivity. Turbulent
diffusion greatly enhances the transfer of mass, momentum and energy.
Apparent stresses in turbulent flows are often several orders of magnitude
larger than in corresponding laminar flows.

In summary, turbulence is dominated by the large, energy-bearing, eddies.
The large eddies are primarily responsible for the enhanced diffusivity and
stresses observed in turbulent flows. Because large eddies persist for long dis-
tances, the diffusivity and stresses are dependent upon flow history, and cannot
necessarily be expressed as functions of local flow properties. Also, while the
small eddies ultimately dissipate turbulence energy through viscous action, the
rate at which they dissipate is controlled by the rate at which they receive energy
from the largest eddies. These observations must play an important role in the
formulation of any rational turbulence model. As we progress through the fol-
lowing chapters, we will introduce more specific details of turbulence properties
for common flows on an as-needed basis.



