10 CHAPTER 1. INTRODUCTION

1.3.3 The Smallest Scales of Turbulence

As stated in the preceding subsection, we regard turbulence as a continuum
phenomenon because the smallest scales of turbulence are much larger than any
molecular length scale. We can estimate the magnitude of the smallest scales by
appealing to dimensional analysis, and thereby confirm this claim. Of course, to
establish the relevant dimensional quantities, we must first consider the physics
of turbulence at very small length scales.

We begin by noting that the cascade process present in all turbulent flows
involves a transfer of turbulence kinetic energy (per unit mass), k, from larger
eddies to smaller eddies. Dissipation of kinetic energy to heat through the action
of molecular viscosity occurs at the scale of the smallest eddies. Because small-
scale motion tends to occur on a short time scale, we can reasonably assume that
such motion is independent of the relatively slow dynamics of the large eddies
and of the mean flow. Hence, the smaller eddies should be in a state where the
rate of receiving energy from the larger eddies is very nearly equal to the rate
at which the smallest eddies dissipate the energy to heat. This is one of the
premises of Kolmogorov’s (1941) universal equilibrium theory. Hence, the
motion at the smallest scales should depend only upon: (a) the rate at which the
larger eddies supply energy, ¢ = —dk/dt, and (b) the kinematic viscosity, v.

Having established ¢ (whose dimensions are length?/time®) and v (whose
dimensions are length?/time) as the appropriate dimensional quantities, it is a
simple matter to form the following length (), time (7) and velocity (v) scales.

n= (1/3/6)1/4, r=Ww/)Y?,  v=(ve)llt (1.1)

These are the Kolmogorov scales of length, time and velocity.

Figure 1.5: Andrei Nikolaevich Kolmogorov (1903-1987), whose classic 1941
paper on the universal equilibrium theory of turbulence provided an early foun-
dation for an understanding of turbulent fluid motion.
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To appreciate how small the Kolmogorov length scale is, for example, es-
timates based on properties of typical turbulent boundary layers indicate the
following. For an automobile moving at 65 mph, the Kolmogorov length scale
near the driver’s window is about 5§ =~ 1.8 - 10~% inch. Also, on a day when the
temperature is 68° F, the mean free path of air, i.e., the average distance traveled
by a molecule between collisions, is £, fp ~ 2.5 - 1076 inch. Therefore,

N ~79 (1.2)
Crnsp
so that the Kolmogorov length is indeed much larger than the mean free path of
air, which, in turn, is typically 10 times the molecular diameter.

1.3.4 Spectral Representation and the Kolmogorov -5/3 Law

To provide further insight into the description of turbulence presented above,
it is worthwhile to cast the discussion in a bit more quantitative form. Since
turbulence contains a continuous spectrum of scales, it is often convenient to do
our analysis in terms of the spectral distribution of energy. In general, a spectral
representation is a Fourier decomposition into wavenumbers, k, or, equivalently,
wavelengths, A = 27 /x. While this text, by design, makes only modest use of
Fourier-transform methods, there are a few interesting observations we can make
now without considering all of the complexities involved in the mathematics of
Fourier transforms. In the present context, we think of the reciprocal of « as the
eddy size.

If E(k)dk is the turbulence kinetic energy contained between wavenumbers
x and k + dk, we can say

k:/o E(k)dk (1.3)

Recall that k& is the kinetic energy per unit mass of the fluctuating turbulent
velocity. Correspondingly, the energy spectral density or energy spectrum
function, E(k), is related to the Fourier transform of k.

Observing that turbulence is so strongly driven by the large eddies, we expect
E(k) to be a function of a length characteristic of the larger eddies, ¢, and the
mean strain rate, S, which feeds the turbulence through direct interaction of
the mean flow and the large eddies. Additionally, since turbulence is always
dissipative, we expect E(x) to depend upon v and e. By definition, it also must
depend upon . For high Reynolds number turbulence, dimensional analysis
suggests, and measurements confirm, that £ can be expressed in terms of ¢ and
¢ according to [Taylor (1935)]

k3/2

e~ = ke (e£)?/3 (1.4)



12 CHAPTER 1. INTRODUCTION

Although we have not yet quantified the length scale ¢, it is the primary
length scale most turbulence models are based on. In our discussion of two-
point correlations in Chapter 2, an alternative to the spectral representation of
turbulence, we will find that one measure of ¢ is known as the integral length
scale. In most turbulence-modeling analysis, we assume there is a wide sepa-
ration of scales, which means we implicitly assume £ is very large compared to
the Kolmogorov length scale, viz.,

£>n (1.5)

Substituting the estimate of € from Equation (1.4) into the Kolmogorov length
scale, we find

2 e (k32 /0)* kL2

= (v3/e)/ ~ 374

~ Re/*  where Rep = (1.6)

12
Ui
The quantity Rer is the turbulence Reynolds number. It is based on the
velocity characteristic of the turbulent motions as represented by the square root
of k, the turbulence length scale, ¢, and the kinematic viscosity of the fluid,
v. Thus, the condition £ > 7 holds provided we have high Reynolds number

turbulence in the sense that
Rer > 1 (1.7)

The existence of a wide separation of scales is a central assumption Kol-
mogorov made as part of his universal equilibrium theory. That is, he hypothe-
sized that for very large Reynolds number, there is a range of eddy sizes between
the largest and smallest for which the cascade process is independent of the
statistics of the energy-containing eddies (so that S and ¢ can be ignored) and
of the direct effects of molecular viscosity (so that v can be ignored). The idea
is that a range of wavenumbers exists in which the energy transferred by inertial
effects dominates, wherefore £ (k) depends only upon € and «. On dimensional
grounds, he thus concluded that

1 1
B(k) = Cre?/Pr5/3, g <R<s (1.8)

where () is the Kolmogorov constant. Because inertial transfer of energy
dominates, Kolmogorov identified this range of wavenumbers as the inertial
subrange. The existence of the inertial subrange has been verified by many ex-
periments and numerical simulations, although many years passed before defini-
tive data were available to confirm its existence. Figure 1.6 shows a typical
energy spectrum for a turbulent flow.

While Equation (1.8) is indeed consistent with measurements, it is not the
only form that can be deduced from dimensional analysis. Unfortunately, this
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Figure 1.6: Energy spectrum for a turbulent flow—Ilog-log scales.

is one of the shortcomings of dimensional analysis, i.e., the results we obtain
are rarely unique. For example, lacking Kolmogorov’s physical intuition, some
researchers would retain v as a dimensional quantity upon which E(k) depends
as well as € and . Then, a perfectly valid alternative to Equation (1.8) is

E(r) = /%% f(snm), n=(°/e)/* (1.9)

where f(k7) is an undetermined function. This form reveals nothing regarding
the variation of E(x) with x, which is a straightforward illustration of how
dimensional analysis, although helpful, is insufficient to deduce physical laws.

Afzal and Narasimha (1976) use the more-powerful concepts from perturba-
tion theory (Appendix B) to remove this ambiguity and determine the asymptotic
variation of the function f in the inertial subrange. In their analysis, they assume
that for small scales, corresponding to large wavenumbers, the energy spectrum
function is given by Equation (1.9). This represents the inner solution.

Afzal and Narasimha also assume that viscous effects are unimportant for
the largest eddies, and that if the only relevant scales are k and ¢, the energy
spectrum function is given by

E(k) = kfg(xf) (1.10)

where k is the turbulence kinetic energy, ¢ is the large-eddy length scale discussed
above, and g(k¢) is a second undetermined function. Although we omit the
details here for the sake of brevity, we can exclude explicit dependence of E'(k)
on strain rate, S, since it is proportional to k'/2/¢ for high Reynolds number
boundary layers. This represents the outer solution.
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Finally, they match the two solutions, which means they insist that the inner
and outer solutions are identical when k7 is small and «¢ is large, i.e.,

/454 f(kn) = kbg(kl) for kp< 1 and k€>1 (1.11)
In words, this matching operation assumes that

“Between the viscous and the energetic scales in any turbulent flow
exists an overlap domain over which the solutions [characterizing]
the flow in the two corresponding limits must match as Reynolds
number tends to infinity.”

The qualification regarding Reynolds number means it must be large enough to
permit a wide separation of scales so that £ > 7. To complete the matching
operation, Afzal and Narasimha proceed as follows. In the spirit of singular-
perturbation theory, the matching operation presumes that the functional forms
of the inner and outer solutions are the same in the overlap region. This is a
much stronger condition than requiring the two solutions to have the same value
at a given point. Hence, if their functional forms are the same, so are their first
derivatives. Differentiating both sides of Equation (1.11) with respect to x gives

net/* VA f! (kn) = kf%g' (k€) for kp <1 and k€>1 (1.12)

Then, noting that the Kolmogorov length scale is = v3/%€~1/* while Equa-
tion (1.4) tells us k = €2/3¢?/3, we can rewrite Equation (1.12) as

V2 (k) = 2/°0%3g' (k8)  for  knp< 1 and k€>1 (1.13)

Finally, multiplying through by x8/3¢-2/3 and using the fact that v2¢~2/3 = 78/3,
we arrive at the following equation.

()3 f!(km) = (k0¥ 3¢ (k€) for kp<1 and k¢>1  (1.14)

If there is a wide separation of scales, we can regard k7 and ¢ as separate inde-
pendent variables. Thus, Equation (1.14) says that a function of one independent
variable, k7, is equaﬁl to a function of a different independent variable, x¢. This
can be true only if both functions tend to a constant value in the indicated limits.
Thus, in the Afzal-Narasimha overlap domain, which is the inertial subrange,

(k)83 f (ky) = constant = f(kn) = Ck(kn) >3 (1.15)

where C) is a constant. Combining Equations (1.9) and (1.15), we again arrive
at the Kolmogorov inertial-subrange relation, viz.,

E(k) = Cre?/3575/3 (1.16)

which is identical to Equation (1.8).



1.3. COMMENTS ON THE PHYSICS OF TURBULENCE 15

Although the Kolmogorov —5/3 law is of minimal use in conventional turbu-
lence models, it is of central importance in work on Direct Numerical Simulation
(DNS), Large Eddy Simulation (LES), and Detached Eddy Simulation (DES),
which we discuss in Chapter 8. The Kolmogorov —5/3 law is so well es-
tablished that, as noted by Rogallo and Moin (1984), theoretical or numerical
predictions are regarded with skepticism if they fail to reproduce it. Its standing
is as important as the law of the wall, which we discuss in the next subsection.

1.3.5 The Law of the Wall

The law of the wall is one of the most famous empirically-determined rela-
tionships in turbulent flows near solid boundaries. Measurements show that, for
both internal and external flows, the streamwise velocity in the flow near the wall
varies logarithmically with distance from the surface. This behavior is known
as the Jaw of the wall. In this section, we use both dimensional analysis and
matching arguments to infer this logarithmic variation.

Observation of high Reynolds number turbulent boundary layers reveals a
useful, approximate description of the near-surface turbulence statistics. We find
that effects of the fluid’s inertia and the pressure gradient are small near the
surface. Consequently, the statistics of the flow near the surface in a turbulent
boundary layer are established by two primary mechanisms. The first is the rate
at which momentum is transferred to the surface, per unit area per unit time,
which is equal to the local shear stress, 7. The second is molecular diffusion of
momentum, which plays an important role very close to the surface. Observations
also indicate that the details of the eddies farther from the surface are of little
importance to the near-wall flow statistics.

The validity of this approximate description improves with decreasing y/4,
where § is the boundary-layer thickness. This is true because the ratio of typical
eddy size far from the surface to eddy size close to the surface increases as y/é
decreases. In other words, since ¢ increases with Reynolds number, we find
a wide separation of scales at high Reynolds numbers. The astute reader will
note interesting parallels between this description of the turbulent boundary layer
and the general description of turbulence presented in Subsection 1.3.2. Note,
however, that the analogy is mathematical rather than physical. This analogy is
discussed, for example, by Mellor (1972) and by Afzal and Narasimha (1976).

Although 7 varies near the surface, the variation with distance from the
surface, y, is fairly slow. Hence, for the dimensional-analysis arguments to
follow, we can use the surface shear stress, 7,,, in place of the local shear stress.
Also, we denote the molecular viscosity of the fluid by p. Since turbulence
behaves the same in gases as in liquids, it is reasonable to begin with 7,,/p and
kinematic viscosity, v = st/ p, as our primary dimensional quantities, effectively
eliminating fluid density, p, as a primary dimensional quantity.



