1.3. COMMENTS ON THE PHYSICS OF TURBULENCE 15

Although the Kolmogorov —5/3 law is of minimal use in conventional turbu-
lence models, it is of central importance in work on Direct Numerical Simulation
(DNS), Large Eddy Simulation (LES), and Detached Eddy Simulation (DES),
which we discuss in Chapter 8. The Kolmogorov —5/3 law is so well es-
tablished that, as noted by Rogallo and Moin (1984), theoretical or numerical
predictions are regarded with skepticism if they fail to reproduce it. Its standing
is as important as the law of the wall, which we discuss in the next subsection.

1.3.5 The Law of the Wall

The law of the wall is one of the most famous empirically-determined rela-
tionships in turbulent flows near solid boundaries. Measurements show that, for
both internal and external flows, the streamwise velocity in the flow near the wall
varies logarithmically with distance from the surface. This behavior is known
as the Jaw of the wall. In this section, we use both dimensional analysis and
matching arguments to infer this logarithmic variation.

Observation of high Reynolds number turbulent boundary layers reveals a
useful, approximate description of the near-surface turbulence statistics. We find
that effects of the fluid’s inertia and the pressure gradient are small near the
surface. Consequently, the statistics of the flow near the surface in a turbulent
boundary layer are established by two primary mechanisms. The first is the rate
at which momentum is transferred to the surface, per unit area per unit time,
which is equal to the local shear stress, 7. The second is molecular diffusion of
momentum, which plays an important role very close to the surface. Observations
also indicate that the details of the eddies farther from the surface are of little
importance to the near-wall flow statistics.

The validity of this approximate description improves with decreasing y/4,
where § is the boundary-layer thickness. This is true because the ratio of typical
eddy size far from the surface to eddy size close to the surface increases as y/é
decreases. In other words, since ¢ increases with Reynolds number, we find
a wide separation of scales at high Reynolds numbers. The astute reader will
note interesting parallels between this description of the turbulent boundary layer
and the general description of turbulence presented in Subsection 1.3.2. Note,
however, that the analogy is mathematical rather than physical. This analogy is
discussed, for example, by Mellor (1972) and by Afzal and Narasimha (1976).

Although 7 varies near the surface, the variation with distance from the
surface, y, is fairly slow. Hence, for the dimensional-analysis arguments to
follow, we can use the surface shear stress, 7,,, in place of the local shear stress.
Also, we denote the molecular viscosity of the fluid by p. Since turbulence
behaves the same in gases as in liquids, it is reasonable to begin with 7,,/p and
kinematic viscosity, v = st/ p, as our primary dimensional quantities, effectively
eliminating fluid density, p, as a primary dimensional quantity.
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Since the dimensions of the quantity 7,,/p are length?/time?, while those of
v are length?/time, clearly we can derive a velocity scale, u,, defined by
ur = 2 (1.17)
p

and a length scale, v/u,. The quantity u, is known as the friction velocity,
and is a velocity scale representative of velocities close to a solid boundary. If
we now postulate that the mean velocity gradient, U /9y, can be correlated as
a function of u,, v/u, and y, dimensional analysis yields

ou  u,
By ?F(UT?J/V) (1.18)

where F'(u,y/v) is presumed to be a universal function. Examination of exper-
imental data for a wide range of boundary layers [see, for example, Coles and
Hirst (1969)], indicates that, as a gnod leading-order approximation,

1
F(ury/v) — - as ury/v — 00 (1.19)

where « is Karman’s constant. The function F'(u,y/v) approaching a constant
value is consistent with the notion that viscous effects cease to matter far from
the surface, i.e., if it varies with u,y/v it would thus depend upon v. Integrating
over y, we arrive at the famous law of the wall, viz.,

U 1 ,
—-—-—:—Enu y

Ur K

+C (1.20)

where C is a dimensionless integration constant. Correlation of measurements
indicate C =~ 5.0 for smooth surfaces and « = 0.41 for smooth and rough
surfaces [see Kline et al. (1969)].

Figure 1.7 shows a typical velocity profile for a turbulent boundary layer.
The graph displays the dimensionless velocity, © ™, and distance, y*, defined as:

(1.21)

The velocity profile matches the law of the wall for values of y* in excess of
about 30. As Reynolds number increases, the maximum value of y* at which
the law of the wall closely matches the actual velocity increases.

Observe that three distinct regions are discernible, viz., the viscous sublayer,
the log layer and the defect layer. By definition, the log layer is the portion
of the boundary layer where the sublayer and defect layer merge and the law of
the wall accurately represents the velocity. It is not a distinct layer. Rather, it is
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Figure 1.7: Typical velocity profile for a turbulent boundary layer.

an overlap region between the inner and outer parts of the boundary layer. As
we will see in the following discussion, originally presented by Millikan (1938),
it is an overlap domain similar to that of the Afzal-Narasimha analysis of the
preceding subsection.

Assuming the velocity in the viscous sublayer should depend only upon u.,
v and y, we expect to have a relationship of the form

U=u,f(y*) (1.22)

where f(y*) is a dimensionless function. This general functional form is often
referred to as the law of the wall, and Equation (1.20) is simply a more explicit
form. By contrast, in the defect layer, numerous experimenters including Darcy,
von Karman and Clauser found that velocity data correlate reasonably well with
the so-called velocity-defect law or Clauser defect law:

D>l

U= Ue - UTQ(U)» n (123)

where U, is the velocity at the boundary-layer edge and g(7n) is another dimen-
sionless function. The quantity A is a thickness characteristic of the outer portion
of the boundary layer.
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Hence, we have an inner length scale v/u, and an outer length scale A.
Millikan’s postulate is that if a wide separation of scales exists in the sense that

Y <A (1.24)

T

then an overlap domain exists such that

urf (y*) =Ue —u,g(n) for 3yt >1 and <1 (1.25)
We can complete the matching without explicit knowledge of the functions f
and g by differentiating Equation (1.25) with respect to y. Hence,

%T—f' (yt)=—--2g'(n) for y*>1 and n<1 (1.26)

Then, multiplying through by y/u., we find
yt f (y+) = ~ng’'(n) for  y">1 and n«1 (1.27)

Thus, since a wide separation of scales means we can regard y* and 7 as
independent variables, clearly the only way a function of y* can be equal to a
function of 7 is for both to be equal to a constant. Therefore,

1 1 ,
y"f (y") = constant = - = flyt) = ;Ifngﬁ +C (1.28)

which, when combined with Equation (1.22), yields Equation (1.20).

As noted earlier, the value of C for a perfectly-smooth surface is C' =~ 5.0.
For surfaces with roughness elements of average height k, the law of the wall
still holds, although C is a function of k;. Figure 1.8 illustrates how C' varies
as a function of the dimensionless roughness height given by

ks
¢ (1.29)

E+
s v

As shown, as k; increases, the value of C' decreases. For large roughness height,
measurements of Nikuradse [Schlichting-Gersten (1999)] show that

1
C — 8.0— ;énk:, kb >1 (1.30)

Substituting this value of C into the law of the wall as represented in Equa-
tion (1.20) yields:

U 1
— = —¥fn (%—) + 8.0  (completely-rough wall) (1.31)

S
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Figure 1.8: Constant in the law of the wall, C, as a funciion of surface roughness;
o based on measurements of Nikuradse [Schlichting-Gersten (1999)].

The absence of viscosity in this equation is consistent with the notion that the
surface “shear siress” is due to pressure drag on the roughness elements.

The defect layer lies between the log layer and the edge of the boundary
layer. The velocity asymptotes to the law of the wall as y/d — 0, and makes
a noticeable departure from logarithmic behavior approaching the freestream.
Again, from correlation of measurements, the velocity behaves as

U+ = Loyt + 0+ B gin? (39) (1.32)
K K 24
where II is Coles’ wake-strength parameter [Coles and Hirst (1969)] and ¢
is boundary-layer thickness. It varies with pressure gradient, and for constant
pressure, correlation of measurements suggests II ~ 0.6. Equation (1.32) is often
referred to as the composite law of the wall and law of the wake profile.

As demonstrated by Clauser (1956) experimentally and justified with per-
turbation methods by others analytically [see, for example, Kevorkian and Cole
(1981), Van Dyke (1975) or Wilcox (1995a)], the velocity in the defect layer
varies in a self-similar manner provided the equilibrium parameter defined by

_ o ap

Br = (1.33)

Tw dT
is constant. The quantities §* and P in Equation (1.33) are displacement thick-
ness and mean pressure, respectively. As demonstrated by Wilcox (1993b), even
when 3, is not constant, if it is not changing too rapidly, the value for Il is close
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Figure 1.9: Coles’ wake-strength parameter, 11, as a function of pressure gradi-
ent; o from data of Coles and Hirst (1969); e Skare and Krogstad (1994).

to the value corresponding to the local value of (3;. Figure 1.9 shows how II
varies with pressure gradient for the so-called equilibrium turbulent boundary
layer, i.e., a boundary layer for which 3 is constant.

1.3.6 Power Laws

Often, as an approximation, turbulent boundary-layer profiles are represented by
a power-law relationship. That is, we sometimes say

1/n
u (3\ (1.34)

U. \és
where n is typically an integer between 6 and 8. A value of n = 7, first suggested
by Prandtl [Schlichting-Gersten (1999)], yields a good approximation at high
Reynolds number for the flat-plate boundary layer. Figure 1.10 compares a 1/7
power-law profile with measurements. The agreement between measured values
for a plate-length Reynolds number of Re, = 1.09 - 107 and the approximate
profile is surprisingly good with differences everywhere less than 3%.

Recently, Barenblatt and others [see, for example, Barenblatt (1991), George,
Knecht and Castillo (1992), Barenblatt (1993) and Barenblatt, Chorin and Pros-
tokishin (1997)] have challenged the validity of the law of the wall. Their
contention is that a power-law variation of the velocity in the inner layer better
correlates pipe-flow measurements and represents a more realistic description of
the turbulence in a boundary layer.

The critical assumption that Barenblatt et al. challenge is the existence of a
wide separation of scales, i.e., large /(v /u,). They maintain that the turbulence
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Figure 1.10: Power-law velocity profile;, — U/U. = (y/8)*/7; o Wieghardt
data at Re; == 1.09- 107 [Coles and Hirst (1969)].

in the overlap region is Reynolds-number dependent. If this is true, the law of the
wall and defect-law Equations (1.22) and (1.23), respectively, must be replaced
by _

U=u-f(yt,Re) and U =U.— uog(n, Re) (1.35)

where Re is an appropriate Reynolds number, f and g are universal functions,
and wu, is a velocity scale that is not necessarily equal to u,. Equivalently, the
Barenblatt et al. hypothesis replaces Equation (1.18) by
oUu _ ur + 6
By y (I?(y ,Re) (1.36)
where the universal function ®(y*, Re) appears in place of F(y™).

In the Millikan argument, the assumption of a wide separation of scales im-
plies that the boundary layer possesses self-similar solutions both in the defect
layer and the sublayer, in the sense that a similarity variable, e.g., y* = u,y/v
and i = y/A, exists in each region. The assumption that we can regard y+ and
7 as distinct independent variables in the overlap region is described as a condi-
tion of complete similarity. By contrast, the Barenblatt hypothesis corresponds
to incomplete similarity. Barenblatt (1979) discusses the distinction between
complete and incomplete similarity in detail.

Under the assumption of incomplete similarity, there is no a priori reason for
the function ®(y*, Re) to approach a constant value in the limit y* — oo, even
when Re — oo. Rather, Barenblatt et al. argue that for large y™,

P (y*,Re) = A (y*)" (1.37)

where the coefficient A and the exponent o are presumed to be functions of
Reynolds number. In the nomenclature of Barenblatt, Chorin and Prostokishin
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(1997), they assume “incomplete similarity in the parameter [y*] and no simi-
larity in the parameter Re.” Combining Equations (1.36) and (1.37) yields

3U+ a—1 A @
—6y+ =A (y+) = Ut = o (y*) (1.38)

Based primarily on experimental data for pipe flow gathered by Nikuradse in
the 1930’s [Schlichting-Gersten (1999)], Barenblatt, Chorin and Prostokishin
conclude that

1.5

A =0.577nRe + 2.50 and o =
fnRe

(1.39)

where Re is Reynolds number based on average velocity and pipe diameter.

To test the Barenblatt et al. alternative to the law of the wall, Zagarola, Perry
and Smits (1997) have performed an analysis based on more recent experiments
by Zagarola (1996). The advantage of these data lies in the much wider range
of Reynolds numbers considered, especially large values, relative to those con-
sidered by Nikuradse. They conclude that the classical law of the wall provides
closer correlation with measurements than the power law given by combining
Equations (1.38) and (1.39), although they recommend a somewhat larger value
for k of 0.44.

To remove the possibility that the 60-year-old data of Nikuradse provide a
poor correlation of A and a, Zagarola, Perry and Smits determine their values
from the Zagarola data, concluding that

1.085 6.535

A = 0.7053¢nRe + 0.3055 d =
nRe + ) an = + {InRe)?

(1.40)

Even with these presumably more-accurate values, the logarithmic law of the wall
still provides closer correlation with measurements than the power-law form.
This prompted Barenblatt, Chorin and Prostokishin (1997) — with a ques-
tionable argument — to demonstrate that at high Reynolds number the Zagarola
experiments have significant surface roughness. Zagarola, Perry and Smits (1997)
reject this possibility in stating that “the pipe surface was shown to be smooth.”
Buschmann and Gad-el-Hak (2003) have offered what may be the final chap-
ter of the power-law saga. They have performed an extensive analysis of mean-
velocity profiles to determine if the power-law or the classical law-of-the-wall
formulation provides optimum correlation of measurements. Their profiles in-
clude five sets of measurements and one data set from a Direct Numerical Sim-
ulation. After a detailed statistical analysis, they conclude that “the examined
data do not indicate any statistically significant preference toward either law.”



