
A Brief History of Turbulence Modeling 
 

At the nineteenth century, Reynolds published his research’s results on turbulence (1895). 

His pioneering work proved to have such profound importance for all future developments 

referred to the standard time-averaging process as one type of Reynolds averaging. 

A mathematical description of turbulent stresses is developed to mimic (imitate) the 

molecular gradient-diffusion process. In this spirit, Boussinesq (1877) introduced the concept 

of a so-called eddy viscosity. The Boussinesq eddy-viscosity approximation is so widely 

known that few authors find a need to reference his original paper.  

Neither Reynolds nor Boussinesq attempted a solution of the Reynolds averaged Navier-

Stokes equation in any systematic manner.  

 

Much of the physics of viscous flows was a mystery in the nineteenth century, and further 

progress awaited Prandtl's discovery of the boundary layer in (1904). Focusing upon 

turbulent flows, Prandtl (1925) introduced the mixing length (an analog of the mean free path 

of a gas) and a straightforward prescription for computing the eddy viscosity in terms of the 

mixing length.  

 

The mixing-length hypothesis, closely related to the eddy-viscosity concept, formed the basis 

of virtually all turbulence modeling research for the next twenty years. Important early 

contributions were made by several researchers, most notably by von Karman (1930). In 

modern terminology, model based on the mixing-length hypothesis referred to as an 

algebraic model or a zero-equation model of turbulence. By definition, an n-equation 

model signifies a model that requires solution of n additional differential transport equations 

in addition to expressing conservation of mass, momentum and energy for the mean flow. 

 

To improve the ability to predict properties of turbulent flows and to develop a more realistic 

mathematical description of the turbulent stresses, Prandtl (1945) assumed a model in which 

the eddy viscosity depends upon the kinetic energy of the turbulent fluctuations, k. He 

proposed a modeled partial-differential equation approximating the exact equation for k. This 

improvement, on a conceptual level, takes account of the fact that the turbulent stresses, and 

thus the eddy viscosity, are affected by where the flow has been, i.e., upon flow history. Thus 

was born the concept of the so-called one-equation model of turbulence. 

 

While having an eddy viscosity that depends upon flow history provides a more physically 

realistic model, the need to specify a turbulence length scale remains. That is, on dimensional 

grounds, viscosity has dimensions of velocity x length. Since the length scale can be thought 

of as a characteristic eddy size and since such scales are different for each flow, turbulence 

models that do not provide a length scale are incomplete. In order to obtain a solution, 

something about the flow must be known, other than initial and boundary conditions. 

Incomplete models are not without worth and, in fact, have proven to be of great value in 

many engineering applications.  

 

To elaborate a bit further, an incomplete model generally defines a turbulence length scale in 

a prescribed manner from the mean flow, e.g., the displacement thickness (δ*) for an attached 

boundary layer. However, a different length scale in this example would be needed when the 

boundary layer separates since δ* may be negative. Yet another length might be needed for 

free shear flows, etc. In essence, incomplete models usually define quantities that may vary 

more simply or more slowly than the Reynolds stresses (e.g., eddy viscosity and mixing 

length). Likely, such quantities would prove to be easier to correlate than the actual stresses. 



 

A particularly desirable type of turbulence model would be one that can be applied to a given 

turbulent flow by prescribing at most the appropriate boundary and/or initial conditions. 

Ideally, no advance knowledge of any property of the turbulence should be required to obtain 

a solution. We define such a model as being complete. Note that our definition implies 

nothing regarding the accuracy or universality of the model, only that it can be used to 

determine a flow with no prior knowledge of any flow details. 

 

Kolmogorov (1942) introduced the first complete model of turbulence. In addition to having 

a modeled equation for k, he introduced a second parameter ω that he referred to as "the rate 

of dissipation of energy in unit volume and time" The reciprocal of ω serves as a turbulence 

time scale, while k
1/2

/ω serves as the analog of the mixing length and kω is the analog of the 

dissipation rate, ε. In this model, known as a k-ω model, ω satisfies a differential equation 

somewhat similar to the equation for k. The model is thus termed a two-equation model of 

turbulence. While this model offered great promise, it went with virtually no applications for 

the next quarter century because of the unavailability of computers to solve its nonlinear 

differential equations. 

 

Chou (1945) and Rotta (1951) laid the foundation for turbulence models that avoid the use of 

the Boussinesq approximation. Rotta invented a plausible (reasonable) model for the 

differential equation governing evolution of the tensor that represents the turbulent stresses, 

i.e., the Reynolds-stress tensor. Such models are most appropriately described as stress-

transport models. Many authors refer to this approach as second-order closure or second-

moment closure. The primary conceptual advantage of a stress-transport model is the natural 

manner in which nonlocal and history effects are incorporated. 

 

Although quantitative accuracy often remains difficult to achieve, such models automatically 

accommodate complicating effects such as sudden changes in strain rate, streamline 

curvature, rigid-body rotation, and body forces. This stands in distinct contrast to eddy-

viscosity models that account for these effects only if empirical terms are added.  

 

For a three-dimensional flow, a stress-transport model introduces seven equations, one for the 

turbulence (length or equivalent) scale and six for the components of the Reynolds-stress 

tensor. As with Kolmogorov's k-ω model, stress-transport models awaited satisfactory 

computer resources. 

 

Thus, by the early 1950's, four main categories of turbulence models had evolved: 

1. Algebraic (Zero-Equation) Models 

2. One-Equation Models 

3. Two-Equation Models 

4. Stress-Transport Models 

 

Algebraic Models.  

Van Driest (1956) developed a viscous damping correction for the mixing-length model that 

is included in virtually all algebraic models in use today.  

Cebeci and Smith (1974) refined the eddy-viscosity/mixing-length model to a point that it can 

be used with great confidence for most attached boundary layers.  

To remove some of the difficulties in defining the turbulence length scale from the shear-

layer thickness, Baldwin and Lomax (1978) proposed an alternative algebraic model that 

enjoyed widespread use for many years. 



One-Equation Models.  

Of the four types of turbulence models described above, the one-equation model has enjoyed 

the least popularity and success. Perhaps the most successful early model of this type was 

formulated by Bradshaw, Ferriss and Atwell (1967).  

In the 1968 Stanford Conference on Computation of Turbulent Boundary Layers (Coles and 

Hirst (1969)], the best turbulence models of the day were tested against the best experimental 

data of the day. In this author's opinion, of all the models used, the Bradshaw-Ferriss-Atwell 

model most faithfully reproduced measured flow properties.  

There has been renewed interest in one-equation models based on a assumed equation for 

eddy viscosity [c.f. Sekundov (1971), Baldwin and Barth (1990), Goldberg (1991), Spalart 

and Allmaras (1992) and Menter (1994)]. This work has been motivated primarily by the ease 

with which such model equations can be solved numerically, relative to two-equation models 

and stress-transport models.  

Of these recent one-equation models, that of Spalart and Allmaras appears to be the most 

accurate for practical turbulent-flow applications. 

 

Two-Equation Models.  

While Kolmogorov’s k-ω model was the first of this type, it remained in insignificance until 

the coming of the computer.  

The most extensive work on two-equation models has been done by Launder and Spalding 

(1972) and a continuing succession of students and colleagues.  

Launder's k-ε model is as well-known as the mixing-length model and, until the last decade 

of the twentieth century, was the most widely used two-equation model.  

Even the model’s demonstrable inadequacy for flows with adverse pressure gradient [c.f. 

Rodi and Scheuerer (1986), Wilcox (1988a, 1993b) and Henkes (1998a)] initially did little to 

discourage its widespread use. 

With no prior knowledge of Kolmogorov's work, Saffman (1970) formulated a k-ω model 

that enjoys advantages over the k-ε model, especially for integrating through the viscous 

sublayer and for predicting effects of adverse pressure gradient. 

Wilcox and Alber (1972), Saffman and Wilcox (1974), Wilcox and Traci (1976), Wilcox and 

Rubesin (1980), Wilcox (1988a, 1998), Menter (1992a), Kok (2000) and Hellsten (2005), for 

example, have pursued further development and application of k-ω models.  

Lakshminarayana (1986) observed that k-ω models had become the second most widely used 

type of two-equation turbulence model even before the k-ε model’s numerous insufficiencies 

were widely known. 

 

Stress-Transport Models.  

By the 1970’s, sufficient computer resources became available to permit serious development 

of this class of model. The most noteworthy efforts were those of Donaldson [Donaldson and 

Rosenbaum (1968)], Daly and Harlow (1970) and Launder, Reece and Rodi (1975). The 

latter evolved as the baseline stress-transport model despite its dependence on essentially the 

same flawed (damaged) equation for ε that plagues the k-ε model. 

 

As a concluding comment, turbulence models have been created that fall beyond the bounds 

of the four categories cited above. This is true because model developers have tried 

unconventional approaches in an attempt to remove deficiencies of existing models of the 

four basic classes. Given the erratic track record of most turbulence models, new ideas are 

always welcome.  


