$$
\begin{aligned}
& \Delta H=? \\
& h=? ?
\end{aligned}
$$

C)

$$
\begin{align*}
& \frac{p_{1}}{\omega}+z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2}}{\omega}+z_{2}+\frac{v_{2}^{2}}{2 g}+h_{\substack{10 / 5 s \\
1 \rightarrow 2 \\
>0}} \tag{I}\\
& z_{2}-z_{1}=l \cos 45=2 * \frac{1}{\sqrt{2}}=\sqrt{2} \mathrm{~m} \text {. } \\
& Q=A_{1} V_{1}=A_{2} V_{2} \\
& \frac{\pi}{A} d_{1}^{2} * V_{1}=\frac{\pi}{A} d_{2}^{2} V_{2} \\
& (200)^{2} * 2=(100)^{2} V_{2} \\
& \therefore V_{2}=8 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

sub. in (1)

$$
\begin{aligned}
& \frac{P_{1}-P_{2}}{\omega}=z_{2}-z_{1}+\frac{v_{2}^{2}-v_{1}^{2}}{2 q} \\
& P_{1}-P_{2}=\left(\sqrt{2}+\frac{8^{2}-2^{2}}{2 g}\right) * \rho_{0 i l} g \\
& \Delta P=4.475 * 0.9 * 1000 * 9.8 \\
& =39,473.36 \quad \mathrm{~N} / \mathrm{m}^{2} \\
& P_{I}=P_{I} \\
& p_{1}+\rho_{0 i 1} g z_{1}=p_{2}+\rho_{0 i l} g\left(z_{2}-h\right)+\rho g h \\
& p_{1}-p_{2}=-\rho_{\text {oil }} g z_{1}+\rho_{\text {oil }} g z_{2}-\rho_{\text {oil }} g h+\rho_{m} g h \\
& =\rho_{\text {oil }} g\left(z_{2}-z_{1}\right)+\left(\rho_{m}-\rho_{\text {oil }}\right) g h \\
& \Delta p-\rho_{\text {oil }} g\left(z_{2}-z_{1}\right)=\left(\rho_{m}-\rho_{\text {oil }}\right) g h \\
& 39473.36-0.9 * 1000 * 9.8 * \sqrt{2}=(13.6-0.9) * 1000 * \\
& \therefore h=0.217 \mathrm{~m}
\end{aligned}
$$

