	Alexandria Higher Institute of Engineering & Technology (AIET)				
	Department of: Mechatronics		Fourth Year	4th Year	
	EME403	Dynamic System Analysis		Midterm-of-Semester-1 Exam, Dec., 1, 2014	
	Examiners:	Dr. Rola Afify and committee			Time: 1.5 hour

Answer the following questions:

Question one: (7 marks)

- A) Define: Modeling, Response, External disturbance, and Initial conditions.
- B) Prove that the solution of the first order differential equation using step input $u(t) = u_o$ will be in this form $x(t) = x_o e^{-t/\tau} + Gu_o [1 e^{-t/\tau}]$

Question Two: (6 marks)

- A) Determine the time constant, response variable, external input and Gain for this differential equation $LDi_L + Ri_L = e_o$, if L = 6mh and R = 100 Ω .
- B) Determine response variable, external input, natural frequency, damping ratio and Gain for this differential equation $LCD^2e_2 + RCDe_2 + e_2 = e_o$, if L = 1mh, C = 10µF and R = 14Ω.

Question Three: (7 marks)

- Develop, using neat sketches, an equation describing the motion of each of the following:-
- a) A 500 kg mass is mounted on a spring of stiffness 2.5×10^3 N/m.
- b) The left end of the shaft is fixed and the disk on the right end has a torque of 2 N.m applied to it. Assume that the shaft inertia is very small in comparison to that of the disk. Given that the inertia of disk ($J = 0.5 \text{ kg.m}^2$) and torsional spring constant ($k_t = 20 \text{ N.m}$).

Good Luck 1/1 Dr. Rola Afify