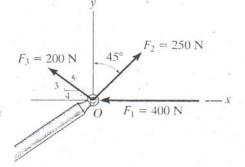

Alexandria Higher Institute of Engineering & Technology (AIET)				
Department of: General Preparatory Year		0th Year		
ME001	Mechanics 1		Midterm-of-Semester-1 Exam, Dec., 2, 2014	
Examiners:	Dr. Raafat Ayad Abdou and Dr. Rola Afify		7	Time: 1.5 hour

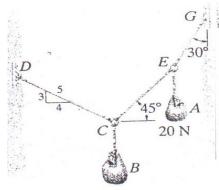
Answer the following questions:

Question one: (3 marks)

The ring shown in Fig (1) is subjected to two forces F_1 and F_2 if it is required that the resultant force Have a magnitude of 1 KN and be directed vertically Downward, Determine


- a) The magnitudes of F_1 and F_2 provided $\theta = 30^{\circ}$
- b) The magnitudes of F_1 and F_2 if F_2 is to have minimum magnitude.

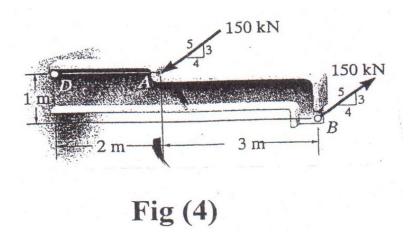
Fig(1)


Question Two: (3 marks)

The end of the boom O in Fig (2) is subjected to three concurrent and coplaner forces. Determine the magnitude and orientation of the resultant force.

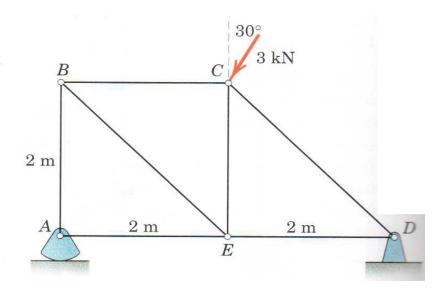
Fig(2)

Question Three: (4 marks)



If the sake A in Fig (3) has a weight of 20 N, Determine The weight of the sake at B and the force in each cord Needed to hold the system in equilibrium position Shown.

Fig (3)


Question Four: (3 marks)

Determine the moment of the couple acting on the member shown in Fig (4)

Question Five: (7 marks)

Determine the force in each member of the truss and state if the members are in tension or in compression.

Fig. (5)