Stress analysis (ME 276)
 Sheet No. 7.

(1) A 1.25 m long rod is made from a 25 mm diameter steel rod. Determine the critical buckling load if the both ends are fixed supported. $E=200 \mathrm{GPa}$.
(2) A 3.6 m long wooden rectangular column has the dimensions shown in Figure 1. Determine the critical load if the both ends are assumed to be fixed supported. \boldsymbol{E} $=12 \mathrm{GPa}$.

Figure 1.
(3) A W360 X 57 column is made of A-36 steel $\left(\boldsymbol{E}=200 \mathrm{GPa}, \boldsymbol{I}_{X}=160 \times 10^{6} \mathrm{~mm}^{4}\right.$ and $I_{Y}=11.1 \times 10^{6} \mathrm{~mm}^{4}$). The column is fixed supported at its base and free at the top. If the column is subjected to an axial load $\boldsymbol{P}=75 \mathrm{KN}$, determine the factor of safety with respect to buckling.
(4) The W360 X 57 column, shown in Figure 2, is made of A-36 steel ($\boldsymbol{E}=200 \mathrm{GPa}$, $\boldsymbol{I}_{X}=160 \times 10^{6} \mathrm{~mm}^{4}$ and $\boldsymbol{I}_{Y}=11.1 \times 10^{6} \mathrm{~mm}^{4}$). Determine the critical load, $\boldsymbol{P}_{c r}$, if the lower end of the column is fixed supported and the upper end is free to move about the strong axis (X-axis) and is pinned about the weak axis (Y -axis).

Figure 2.
(5) A column is made of A-36 steel $\left(\boldsymbol{E}=200 \mathrm{GPa}, I_{X}=160 \times 10^{6} \mathrm{~mm}^{4}\right.$ and $I_{Y}=$ $11.1 \times 10^{6} \mathrm{~mm}^{4}$) has a length of 6 m and is pinned at both ends. If the crosssectional area has the dimensions shown in Figure 3, determine the critical load.

Figure 3.
(6) A column is made of 2014-T6 aluminum $(\boldsymbol{E}=73 \mathrm{GPa})$ has a length of 9 m and is fixed at its bottom and pinned at its top. If the cross-sectional area has the dimensions shown in Figure 3, determine the critical load.

Page 2 of 3
(7) An A-36 steel column $(\boldsymbol{E}=200 \mathrm{GPa})$ has a length of 4 m and is pinned at both ends. If the cross-sectional area has the dimensions shown in Figure 4, determine the critical load.

Figure 4.
(8) Solve problem (7) if the column is fixed supported at its bottom and pinned at its top.
(9) An A-36 steel column ($\boldsymbol{E}=200 \mathrm{GPa}$) has a length of 5 m and is fixed supported at both ends. If the cross-sectional area has the dimensions shown in Figure 5, determine the critical load.

Figure 5.

