

Figure P4.12 (a) *RC* circuit. (b) Dual *RC* circuit.

a. Write the modeling equations.

heel

#

(a)

b. Derive the differential equation of the form $[\tau D + 1]c_1 = Gc_0$.

(b)

c. What are the mathematical expressions for the time constant τ and the gain G? . Suppose two RC networks are lumped together as shown in Figure P4:12(b).

a. Write the modeling equations.

b. Derive the differential equation for the circuit.

c. You might be tempted to think that the differential equation for this circuit is simply the product of two RC's. Prove that it is not by asking whether

$$(\tau_1 D + 1)(\tau_2 D + 1)c_2 = c_0?$$

Shown in Figure P4.13 is an electric circuit.

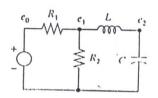
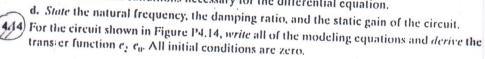



Figure P4.13 R1.C circuit.

a. Wile the modeling equations.

b. Derive the differential equation for e_2 as a function of e_0 .

c. State the initial conditions necessary for the differential equation.

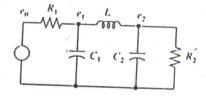


Figure P4.14 'RLC circuit.

For the circuit shown in Figure P4.16, write the modeling equations and derive the transform function for e_3 as a function of e_0 . What is the static gain?

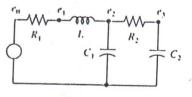


Figure P4.16 RLC circuit.

Shown in Figure P4.18 is an *RLC* circuit with a parallel bypass resistor. Write the modeling equations and *derive* a differential equation for e_1 as a function of e_0 . Express the required initial conditions of this second-order differential equation in terms of the known initial conditions $e_1(0)$ and $i_1(0)$.

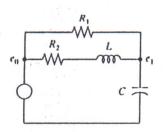


Figure P4.18 RLC circuit.

4,25 Shown in Figure P4.25 is an electronic circuit with an op-amp buffer. Derive the differential equation for e_0 as a function of the input e_i . Calculate the static gain, natural frequency, and diamping ratio if $R_f = 10 \ k\Omega$, $R_i = 10 \ k\Omega$, $C_f = 1 \ \mu f$, $R_L = 500 \ \Omega$, and $C_{l.} = 10 \, \mu l.$

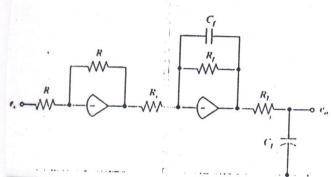


Figure P4.25 Op-amp filter circuit.

4.27 Shown in Figure P127 is an op amp circuit with two capacitors Write the modeling equations and derive the transfer function for \mathcal{C} as a function of \mathcal{C}_j

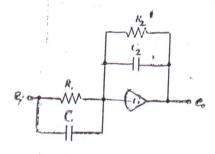


Figure P4.27 Op-amp filter circuit.

Description	Transfer Function	Circuit
Sign Changer	$e_a = -e_i^{-2}$	
Amplifier	$c_{ii} = -\frac{R_f}{R_i}c_i$	$\begin{array}{c} R_{i} \\ e_{i} \circ - W \end{array} \xrightarrow{R_{f}} \\ \hline \end{array} \\ \hline \end{array}$
Integrator	$e_{\sigma} = \frac{-e_{\tau}}{\tau D}$ $\tau = RC$	
Differentiator	$\epsilon_{\sigma} = -\tau D c_i$ $\tau = RC$	$\begin{array}{c} R \\ C \\ e_i \circ - \left \right - \left(- \right) \circ e_n \end{array}$
Lag	$e_{ii} = \frac{-\frac{R_f}{R_i}e_i}{(\tau D + 1)}$ $\tau = R_f C$	R_{L} $e_{i} \circ - W - e_{i}$
Lend	$\epsilon_{o} = -\frac{R_{f}}{R_{i}}(\tau D + 1)$ $\tau = R_{i}C$	$\begin{array}{c} C & R_{f} \\ \hline \\ R_{i} \\ e_{i} \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ R_{i} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \hline \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C \\ R_{f} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}
Lead-Lag or Lag-Lead	$e_{ii} = -\frac{R_f}{R_i} \frac{(\tau_i D + 1)c_i}{(\tau_f D + 1)}$ $\tau_i = R_i C_i$ $\tau_f = R_f C_f$	R_{f} C_{i} C_{f} C_{f} C_{r}
Bandwidth-Limited Integrator	$e_{ii} = \frac{-(\tau_j D + 1) e_i}{\tau_i D}$ $\tau_j = R_j C$ $\tau_j = R_j C$	$\begin{array}{c} C \\ R_{i} \\ e_{i} \\ e_{i} \\ \end{array}$
Bandwidth-Limited Differentiator	$c_{ii} = \frac{-\tau_f D r_i}{(\tau_i D + 1)}$ $\tau_f = R_f C$ $\tau_i = R_i C$	$R_{i} \xrightarrow{C} \underbrace{K_{i}}_{e_{i}} \circ \underbrace{K_{i}}_{e_{i}} \circ e_{i}$