	Alexandria Higher Institute of Engineering \& Technology (AIET)		
	General	Preparatory Year	
	ME001	Mechanics II	Final, August, 21, 2010
	Examiners:	Dr. Rola Afify	Time: 3 hours

Answer the following questions:

1- The acceleration of a particle as it moves along a straight line is given by $a=2 t-1$, in $\mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. If $\mathrm{s}=1 \mathrm{~m}$ and $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=0$, determine the particle's velocity and position when $t=6 \mathrm{~s}$. Also determine the total distance the particle travels during this time period.

2- Ball A is launched vertically with an initial velocity of $15 \mathrm{~m} / \mathrm{s}$ from height 100 m . At the same time, another ball B is launched from the ground with an initial velocity of $55 \mathrm{~m} / \mathrm{s}$. Calculate the time and height at which the two balls are passing each other, also calculate the velocity of each ball at that time.

100 m

3- The v-t diagram for the motion of a train as it moves from station A to station B is shown. Draw the s-t and a-t graphs during the same time period.

Hint:
For the first inclined line, use this equation $\frac{v-0}{t-0}=\frac{40-0}{30-0}$
and for the second inclined line, use this equation

$$
\frac{v-40}{t-90}=\frac{0-40}{120-90}
$$

4- A particle moves in a curvilinear motion such that its displacement is given $\vec{s}=\left\{\left(t^{4}-2 t^{2}\right) \vec{i}+\left(2 t^{3}-3 t\right) \vec{j}\right\} \quad \mathrm{m}$. Determine the particle's velocity and acceleration at $\mathrm{t}=3 \mathrm{~s}$.

5- The man stands 18 m away from the wall and throws a ball at it with a speed $v_{o}=15 \mathrm{~m} / \mathrm{s}$. Determine the angle θ at which he should release the ball so that it strikes the wall as shown in the figure. The room has a ceiling height of 6 m . Calculate the
 height (h).

6- a) In Polar coordinates starting from $\vec{r}=r \bar{u}_{r}$, proof that

$$
\vec{v}=(\dot{r}) \vec{u}_{r}+(r \dot{\theta}) \vec{u}_{\theta} \quad \text { and } \quad \vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{u}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{u}_{\theta}
$$

b) The rod OA, shown in figure, is rotating in the horizontal plane such that $\theta=t^{3}, \mathrm{rad}$. At the same time, the collar B is sliding outward along OA so that $r=100 t^{2}, \mathrm{~mm}$. If in both cases t is in seconds, determine the velocity and acceleration of the collar when $t=2 \mathrm{~s}$.

