	Alexandria Higher Institute of Engineering \& Technology (AIET)			
	All Departments			$0^{\text {th }}$ Year
	ME002	Mechanics II		ugust, 29, 2011
	Examiners:	Dr. Rola Afify and committee		Time: 3 hours

Answer the following questions:

 Question one (12 marks)A particle moves along a horizontal path with a velocity of $v=\left(3 t^{2}-6 t\right) \mathrm{m} / \mathrm{s}$, where t is the time is seconds. If it is initially located at the origin O, determine the distance traveled in 3.5 s , and the particle's average velocity and average speed during the time interval.

Question two (12 marks)

a) Derive the Cartesian equation for a projectile.
b) The snowmobile is traveling at $10 \mathrm{~m} / \mathrm{s}$ when it leaves the embankment at A. Determine the time of flight from A to B and the range R of the trajectory.

Question three (12 marks)

The driver attempts to tow the crate using a rope that has a tensile strength of 1 kN . If the crate is originally at rest and has a mass of 250 kg , determine the greatest acceleration it can have if the coefficient of static friction between the crate and the road
 is $\mu_{s}=0.4$, and the coefficient of kinetic friction is $\mu_{k}=0.3$.

Question Four (12 marks)

A motor gives disk A an angular acceleration of $\alpha_{A}=0.6 t^{2}+0.75 \mathrm{rad} / \mathrm{s}^{2}$, where t is in seconds. If the initial angular velocity of the disk is $\omega_{o}=6 \mathrm{rad} / \mathrm{s}$, determine the magnitudes of the velocity and acceleration of block B when $t=2 s$.

Question Five (12 marks)

Determine the velocity of the slider block C at the instant $\theta=45^{\circ}$, If the link AB is rotating at $4 \mathrm{rad} / \mathrm{s}$.

