	Alexandria Higher Institute of Engineering & Technology (AIET)					
	Mechatronic Department		3 rd Year			
	EME312	Fluid Mechanics	Final, June, 2, 2012			
	Examiners:	Dr. Rola Afify and committee	Time: 3 hours			

Answer the following questions: Question one (12 marks)

- a) Discuss the relation between:
 - Viscosity and Temperature for a certain fluid.
 - Absolute, Atmospheric and gauge pressure.
- b) A diver is working at a depth of 18 m under sea water surface; calculate the pressure at this depth in gauge and absolute values if the specific gravity of sea water is 1.02.
- c) A rectangular tank (3 m long, 2 m wide, and 2.5 m high) contains oil of specific gravity $\gamma = 0.9$. Calculate the magnitude, direction, and line of action of the pressure force on the following:
 - i. The sides of the tank.
 - ii. The tank's bottom.

Question two (12 marks)

- a) Compare between Piezometer tube and U-tube with one leg enlarged.
- b) A horizontal water pipeline ABC transmits 40 lit/s between two tanks. The pipe material is commercial steel, the part AB is 15 cm diameter and 200 m long and the part BC is 18 cm diameter and 300 m long. Calculate the difference in water levels between the two tanks and sketch TEL and HG for the pipe. All changes in pipe diameter are sudden. Take $\mu = 0.001$ N.s/m².

Question three (12 marks)

- a) Compare between Diaphram pump and Parallel cylinder pump.
- b) Calculate the volumetric and mechanical efficiencies of gear pump rotating at 1200 rpm and discharging 1.27 lit/sec using 0.7 hp electric motor. The gear is 6 cm diameter and 4 cm thick. The pump is working against head 21.41 m of water, area between teeth equals 1.655 cm² and each gear has five teeth.

Question Four (12 marks)

a) Explain how to avoid cavitation for positive displacement pump.

) it continugat pump has the following performance.							
$Q (m^3/hr)$	0	15	30	45	60	75	
hm (m)	75	72	65	53	38	19	
η (%)	0	43	69	73	65	49	

b) A centrifugal pump has the following performance:

• When this pump is used in a system where the difference between delivery and suction levels (h_{st}) is 42 m, it gives a discharge of 47 m³/hr.

• Calculate the discharge and shaft power of the pump when (h_{st}) decreases to 35 m.

Question Five (12 marks)

For the hydraulic circuit shown in figure:-

- a) Write the name of each component.
- b) What will happen to (6) when:
 - i- the left solenoid in (5) is activated (draw the circuit).
 - ii- the right solenoid in (5) is activated (use different pen in the previous drawing).

