	Alexandria Higher Institute of Engineering \& Technology (AIET)		
	Mechatronic Department	$3^{\text {rd }}$ Year	
	EME312	Fluid Mechanics	Final, May, 20, 2015
	Examiners:	Dr. Rola Afify and committee	Time: 3 hours

Answer the following questions:

Question one (12 marks)

a) The pressure of a liquid, $\mathrm{k}=2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, increases from 1 bar to 100 bars at constant temperature. Find the corresponding change in fluid volume to its initial volume.

$$
\begin{gathered}
k=\frac{-\Delta P}{\left(\frac{\Delta V}{V_{1}}\right)}=\frac{-\left(P_{2}-P_{1}\right)}{\left(\frac{\Delta V}{V_{1}}\right)} \\
2 \times 10^{9}=\frac{-(100-1) \times 10^{5}}{\left(\frac{\Delta V}{V_{1}}\right)} \\
\frac{\Delta V}{V_{1}}=\frac{-(100-1) \times 10^{5}}{2 \times 10^{9}}=\frac{-99}{2000}=4.95 \times 10^{-3}
\end{gathered}
$$

b) Consider a manometer connected as shown in Figure. Calculate the pressure difference between A and B .

$$
\begin{gathered}
P_{I}=P_{I I} \\
P_{A}-\rho_{w} g c-\rho_{w} g(b-c)=P_{B}-\rho_{w} g c-\rho_{B} g(b-c) \\
P_{A}-P_{B}=\rho_{w} g c+\rho_{w} g(b-c)-\rho_{w} g c-\rho_{B} g(b-c) \\
P_{A}-P_{B}=\rho_{w} g(b-c)-\rho_{B} g(b-c) \\
P_{A}-P_{B}=\left[\rho_{w}-\rho_{B}\right] g(b-c) \\
P_{A}-P_{B}=[1000-880] \times 9.8 \times(1080-610) \times 10^{-3}=552.72 P a
\end{gathered}
$$

c) Gate AB is 5 m wide into the paper. Determine the hydrostatic force acting on the gate and its line of action, using neat sketches.

$$
\begin{aligned}
F_{R} & =w h_{0} * \frac{h_{0}}{2} \times B \\
& =9800 * \frac{10^{2}}{2} * 5 \\
& =2.45 * 10^{6} \text { Newton }
\end{aligned}
$$

$F_{R} \perp$ gate and acts at $\frac{10}{3}$ from the bottom.

Question two (12 marks)
a) Compare between:

- Barometric pressure and Bourdon tube gage.

$$
\begin{aligned}
P_{I} & =P_{\text {II }} \\
P_{\text {atm }} & =P_{\text {yap. }}^{1 H g}+\rho_{m} g H \\
& =13600 * 9.8 * 0.76 \\
& =1.013 * 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& =1.013 \text { bar }
\end{aligned}
$$

* Bourdon tube gauge

* For measuring pressur.
 in almost all ranges except minutely small press
* Dis advantages

1- Needs Calibration on dead weight tester.
2 -acuracy is less the. Liquid Columns.

$$
\begin{align*}
& P_{I}=P_{I I} \\
& \frac{F}{A}=\frac{f}{a} \quad \therefore F=f \frac{A}{a} \\
& \Sigma M_{0}=0 \quad \therefore f=\frac{P L}{l} \tag{1}\\
& f l=P L
\end{align*}
$$

$$
\text { from (1) \& (2) } F=P * \frac{L}{l} \cdot \frac{A}{a}
$$

n : no. of strockes to lift the load distance x

$$
n=\frac{\text { total volume of oil }}{\text { volume/stroke }}
$$

(2) Hydraulic press

$$
\begin{aligned}
& \eta=\frac{o / p}{i / p}<1 \quad \quad 0 / p=\frac{F * x}{t} \\
& i / p=\frac{o / p}{\eta}=\frac{F \cdot x}{t \cdot \tau}
\end{aligned}
$$

- Venturi and Orifice meters.
principle of venture, meter

(3) Pipe orifices

b) Water discharged from a large tank into atmosphere through a pipe of 50 mm diameter and 45 m long which is sharp at entry, after which there is a sudden enlargement to a pipe of 75 mm diameter, 30 m long. The point of delivery is 6 m below the surface water in the tank. Determine the discharge in $\mathrm{m}^{3} / \mathrm{sec}$. Assume that f ' $=0.02$ for both pipes. Draw T.E.L. and H.G.

$$
Q=2 ? \mathrm{~m}^{3} / \mathrm{sec}
$$

$$
\begin{align*}
& Q=A_{1} V_{1}=A_{2} V_{2} \therefore V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\left(\frac{d_{2}}{d_{1}}\right)^{2} V_{2}=\frac{9}{4} V_{2} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
6- & h_{\substack{\text { loss }}}=\frac{V_{B}^{2}}{2 g} \longrightarrow(2) \\
h_{\text {loss }}= & 0.5 \frac{V_{1}^{2}}{2 g}+f \frac{l_{1}}{d_{1}} \frac{V_{1}^{2}}{2 g}+1 \frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}+f \frac{l_{2}}{d_{2}} \frac{V_{2}^{2}}{2 g} \\
= & \frac{0.5\left(\frac{9}{4}\right)^{2} V_{2}^{2}}{2 g}+0.02 * \frac{45}{50 * 10^{-3}} * \frac{\left(\frac{g}{4}\right)^{2} V_{2}^{2}}{2 g}+ \\
& \frac{\left(\frac{g}{4} V_{2}-V_{2}\right)^{2}}{2 g}+0.02 * \frac{30}{75 * 10^{-3}} * \frac{V_{2}^{2}}{2 g} \\
= & \frac{V_{2}^{2}}{2 g}\left[\frac{81}{2 * 16}+\frac{0.02 * 45 * 81}{50 * 10^{-3} * 16}+\frac{81}{16}+\frac{25}{16}+\frac{0.02 * 30}{75 * 10^{-3}}\right] \\
= & \frac{V_{2}^{2}}{2 g} * 108.28
\end{aligned}
$$

sub. in (2)

$$
\begin{aligned}
\frac{V_{2}^{2}}{2 g}+\frac{V_{2}^{2}}{2 g} * 108.28=6 \\
\therefore V_{2}=1.037 \mathrm{~m} / \mathrm{sec} \\
\begin{aligned}
Q=A_{2} V_{2}= & \frac{\pi}{4} d_{2}^{2} V_{2} \\
=\frac{\pi}{4}\left(75 * 10^{-3}\right)^{2} * 1.037 & =4.583 * 10^{-3} \mathrm{~m}^{3} / \mathrm{se} \\
& =4.583 \mathrm{li}+/ \mathrm{sec}
\end{aligned}
\end{aligned}
$$

Question Three (12 marks)
a) Compare between Diaphram and Gear pumps.
ii) Diaphram pump
disadvantages

- very low pressure
- low discharge

b) Rotary pumps
i) Gear pump
$Q=\psi_{v_{01}} * 2 n(a * l) \frac{N}{60}$
$n=$ no. of teeth
$l=$ gear length

$a=$ area between two teeth
$N=r p m$
* This pump is only used for oil.
* One of the cheapest pumps.
* High pressure but low discharge.
b) A gear pump of volumetric and mechanical efficiencies are 95% and 80%, respectively, rotates at 1200 rpm . The gear is 6 cm diameter and

$$
\begin{aligned}
& \eta_{\text {vol }}=0.95 \quad \begin{array}{l}
4 \mathrm{~cm} \text { thick. The pump is working against head } 22 \mathrm{~m} \text { of water, } \\
\text { between teeth equals } 1.655 \mathrm{~cm}^{2} \text { and each gear has five teeth. Talc } \\
\eta_{m}=0.8 \quad \\
\mathrm{the} \mathrm{power} \mathrm{of} \mathrm{the} \mathrm{electric} \mathrm{motor.}
\end{array} \\
& a=1200 \mathrm{rpm} \quad d=6 \mathrm{~cm}, l=4 \mathrm{~cm} \quad h_{\text {st }}=22 \mathrm{~m} \\
& a=1.655 \mathrm{~cm}^{2} \quad n=5 \text { teeth } \quad \text { power }=? ?
\end{aligned}
$$

Sold

$$
\begin{aligned}
\text { shaft power } & =\frac{w Q_{\text {att }}}{Y_{m}} \\
& =\frac{9800 * Q_{\text {act }} * 22}{0.8}
\end{aligned}
$$

$$
\begin{aligned}
Q_{\text {act }} & =\eta_{\text {vol }} * 2 n a l * \frac{N}{60} \\
& =0.95 * 2 * 5 * 1.655 * 10^{-4} * 4 * 10^{-2} * \frac{1200}{60} \\
& =1.2578 * 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

sub. in (1)

$$
\text { sh.power }=338.9771 \text { watt }
$$

Question Four (12 marks)
a) Explain how to discover cavitation in the installed pumps.

 stare Gd ers (1)

 (3) J. Il Jos in? (3)
b) A centrifugal pump, running at 2140 rpm with water at $20^{\circ} \mathrm{C}$, produces the following performance data:

$\mathrm{Q}, \mathrm{m} 3 / \mathrm{s}$	0.00	0.05	0.10	0.15	0.20	0.25	0.30
H, m	105	104	102	100	95	85	67
Power, kW	$\# \# \# \# \#$	115	135	171	202	228	249

i. Determine the best efficiency point.
ii. Determine the mechanical losses.
iii. Determine the maximum discharge obtained when this pump is used in a 2 in. pipe 100 m long having 2 bends $\mathrm{k}=0.8$), static head $=20 \mathrm{~m}$ and $\mathrm{f}=0.01$.
ally 1 - vav.

$$
\text { sh. power }=\frac{\omega Q H}{Y} \quad \therefore y=\frac{w Q H}{\text { sh. power }}
$$

From the next table
(i) $Y_{\text {max }}=92 \%$ at $Q=0.2 \mathrm{~m}^{3} / \mathrm{se}$
(ii) from sh.power graph mechanical losses $=100 \mathrm{KW}$
(iii) $Q_{\max }=$?? $\quad d=2^{\prime \prime} * \frac{2.54}{100}=0.05 \mathrm{~m} \quad l=100 \mathrm{~m}$ 2 bends $K=0.8 \quad h_{\text {st }}=20 \mathrm{~m} \quad f=0.01$

$$
h_{\text {piping }}=h_{\text {st }}+h_{\text {loss }}^{\text {total }}+\frac{v^{2}}{2 g}
$$

$Q, \mathrm{~m}^{3} / \mathrm{s}$	0.0	0.05	0.10	0.15	0.20	0.25	0.30
$H, \mathrm{~m}$	105	104	102	100	95	85	67
$P, \mathrm{~kW}$		115	135	171	202	228	249
$\eta_{(\%)}$	0	44	74	86	$\underline{92}$	91	79
hpiping	20	49.36	25.87	33.2	43.49	56.7	72.85

H versus Q

$$
\begin{aligned}
\text { hpiping } & =20+f \frac{l}{d} \frac{v^{2}}{2 g}+2 K \frac{v^{2}}{2 g}+\frac{v^{2}}{2 g} \\
& =20+\frac{Q^{2}}{2 * 9.8} * \frac{1}{\left[\frac{\pi}{4}(0.05)^{2}\right]^{2}}\left[0.01 * \frac{100}{0.05}+2 * 0.8+1\right] \\
\text { hpiping } & =20+587.25 Q^{2}
\end{aligned}
$$

max. discharge

$$
Q_{\max }=0.29 \mathrm{~m}^{3} / \mathrm{sec}
$$

Question Five (12 marks)
a) Write the functions of:i. Oil.
(1) transmit power
(2) Lubricate moving parts
(3) seal clearances between mating parts.
(4) dissipate heat
(5) prevent Corrosion
ii. Valves.
(1) protect the components of the circuit
(2) Control oil direction.
(3) Control pressure
(4) Control discharge.
iii. Actuators.

They transfer Hydraulic energy into mechanical energy
(1) Hydraulic motors
hydraulic energy \longrightarrow rotation motion
(2) Hydraulic cylinders

Hydraulic energy \longrightarrow translation motion
b) Draw a complete hydraulic circuit used to rotate a hydraulic motor with a controllable velocity. This circuit contains:-
i. Vented reservoir.
iii. Electric motor.
vi. Relief valve. motor.
ix. Directional control valve two chambers four ports using solenoid control.

