Alexandria Higher Institute of Engineering & Technology (AIET)					
Mechatronic	Department	3 rd Year			
EME312	Fluid Mechanics	Final, May, 20, 2015			
 Examiners:	Dr. Rola Afify and committee	Time: 3 hours			

Answer the following questions: Question one (12 marks)

a) The pressure of a liquid ($k = 2 \times 10^9 \text{ N/m}^2$) increases from 1 bar to 100 bars at constant temperature. Find the corresponding change in fluid volume to its initial volume.

- b) Consider a manometer connected as shown in Figure. Calculate the pressure difference between A and B.
- c) Gate AB is 5 m wide perpendicular to the paper. Determine the hydrostatic force acting on the gate and its line of action, using neat sketches.

Question two (12 marks)

- a) Compare between:
 - Barometric pressure and Bourdon tube guage.
 - Hydraulic jack and Hydraulic press.
 - Venturi and Orifice meters.
- b) Water discharged from a large tank into atmosphere through a pipe of 50 mm diameter and 45 m long which is sharp at entry, after which there is a sudden enlargement to a pipe of 75 mm diameter, 30 m long. The point of delivery is 6 m below the surface water in the tank. Determine the discharge in m³/sec. Assume that coefficient of friction (f) is equal to 0.02 for both pipes.

Question Three (12 marks)

- a) Compare between Diaphram and Gear pumps.
- b) A gear pump of volumetric and mechanical efficiencies are 95% and 80%, respectively, rotates at 1200 rpm. The gear is 6 cm diameter and 4 cm thick. The pump is working against head 22 m of water, area between teeth equals 1.655 cm^2 and each gear has five teeth. Calculate the power of the electric motor.

Question Four (12 marks)

- a) Explain how to discover cavitation in the installed pumps.
- b) A centrifugal pump, running at 2140 rpm with water at 20°C, produces the following performance data:

Q, m3/s	0.00	0.05	0.10	0.15	0.20	0.25	0.30
H, m	105	104	102	100	95	85	67
Power, kW		115	135	171	202	228	249

- i. Determine the best efficiency point.
- ii. Determine the mechanical losses.
- iii. Determine the maximum discharge obtained when this pump is used in a 2in. pipe 100 m long having 2 bends (k = 0.8), static head = 20 m and f = 0.01.

Question Five (12 marks)

- a) Write the functions of:
 - i. Oil.
 - ii. Valves.
 - iii. Actuators.
- b) Draw a complete hydraulic circuit used to rotate a hydraulic motor with a controllable velocity. This circuit contains:
 - i. Vented reservoir. ii. Variable speed Hydraulic pump.
 - iii. Electric motor. iv. Filter. v. Check valve
 - vi. Relief valve. vii. Flow control valve. viii. Hydraulic motor.
 - ix. Directional control valve two chambers four ports using solenoid control.