	Alexandria Higher Institute of Engineering \& Technology (AIET)		
	Mechatronic Department	Third Year	
	EME312	Fluid Mechanics	Midterm, May, 5,2011
	Examiners:	Dr. Rola Afify and Committee	Time: 1.5 hours

Answer the following questions:
Question one (7 marks)
A) Define: Density, Streamline and Steady flow (two degrees).

Solution

Density: mass per unit volume ($\rho=\frac{m}{V}$).
Streamline: a smooth imaginary curve represents one particle in the flow. The tangent of this line gives the direction of velocity at any point.
Steady flow: Flow parameters (pressure, velocity and volume flow rate) are constant with respect to time.

B) Sketch the relation between viscosity and temperature for a certain fluid (two degrees).

Solution

The relation between viscosity and temperature for a certain fluid

C) A 25 mm diameter shaft is pulled through a cylindrical bearing as shown in Figure. The lubricant that fills the 0.3 mm gap between the shaft and bearing is oil having a kinematic viscosity of $8 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ and a specific gravity of 0.91 . Determine the force P required to pull the shaft at a velocity of $3 \mathrm{~m} / \mathrm{s}$. Assume the velocity distribution in the gap is linear. (three degrees)

Solution

$\mathrm{d}=25 \mathrm{~mm}, \mathrm{y}=0.3 \mathrm{~mm}, v=8 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$, sp.gr. $=0.91$
$\mathrm{P}=?$? , $\mathrm{u}=3 \mathrm{~m} / \mathrm{s}$, linear velocity distribution.
$v=8 \times 10^{-4}=\frac{\mu}{\rho}$
$\rho=s p . g r . x \rho_{\text {water }}=0.91 \times 1000=910 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=v \times \rho=8 \times 10^{-4} \times 910=0.728$ Pa.s
$F_{\text {visc }}=\mu A \frac{d u}{d y}$
$P=0.728 \times(\pi d l) \times \frac{3}{0.3 \times 10^{-3}}=0.728 \times\left(\pi \times 25 \times 10^{-3} \times 0.5\right) \times \frac{3}{0.3 \times 10^{-3}}=286 \mathrm{~N}$

Question two (7 marks)

A) State the relation between absolute, atmospheric and gage pressure (one degree).

Solution

$$
P_{a b s}=P_{g a g e}+P_{a t m}
$$

B) Differentiate between Laminar, Transient and Turbulent flow (three degrees).

Solution

Laminar flow $\mathrm{Re}<2000$
The particle moves in parallel layers.

Transient flow $2000<\operatorname{Re}<4000$ The dye filament begins to oscillate.

Turbulent flow $\operatorname{Re}>4000$
The dye color is diffused over the whole cross-section.

Dye filament
C) A manometer is connected between two pipelines, A and B shown in figure. What is the pressure difference between A and B expressed as meters of water? (three degrees)

Solution

$P_{I}=P_{I I}$
$P_{A}+w_{A} h_{1}=P_{B}+w_{\text {man }} h_{2}+w_{B} h_{3}$
$h_{1}=40 \mathrm{~cm}, h_{2}=20 \mathrm{~cm}, h_{3}=50 \mathrm{~cm}$
$P_{A}-P_{B}=w_{\operatorname{man}} h_{2}+w_{B} h_{3}-w_{A} h_{1}$

$P_{A}-P_{B}=(1.3 \times 9800) \times\left(20 \times 10^{-2}\right)+(0.8 \times 9800) \times\left(50 \times 10^{-2}\right)-(1 \times 9800) \times\left(40 \times 10^{-2}\right)$
$\Delta P=P_{A}-P_{B}=2,548$ Pa.s
$\Delta P=w_{\text {water }} h$
$h=\frac{\Delta P}{w_{\text {water }}}=\frac{2,548}{9800}=0.26 \mathrm{~m}$ of water $=26 \mathrm{~cm}$ of water

Question three (6 marks)

Water is flowing in the conduit shown in figure. If the flow rate Q is 8 lit/s and the diameters d_{1}, d_{2} and d_{3} at sections 1,2 and 3 are 50,60 and 100 mm respectively, find the flow velocities v_{1}, v_{2} and v_{3} (two degrees). If the pressure P_{1} at section 1 is 24.5 kPa , what are the pressures P_{3} at sections 3 (two degrees)? Also, draw T.E.L. and H.G. for the conduit at the three sections (neglect losses) (two degrees).

Solution

To get flow velocities $\mathrm{v}_{1}, \mathrm{v}_{2}$ and v_{3}
$Q=A_{1} v_{1}=A_{2} v_{2}=A_{3} v_{3}$
$8 \times 10^{-3}=\left(\frac{\pi}{4} d_{1}^{2}\right) v_{1}=\left(\frac{\pi}{4} d_{2}^{2}\right) v_{2}=\left(\frac{\pi}{4} d_{3}^{2}\right) v_{3}$
$8 \times 10^{-3}=\left(\frac{\pi}{4}\left(50 \times 10^{-3}\right)^{2}\right) v_{1}=\left(\frac{\pi}{4}\left(60 \times 10^{-3}\right)^{2}\right) v_{2}=\left(\frac{\pi}{4}\left(100 \times 10^{-3}\right)^{2}\right) v_{3}$
$v_{1}=\frac{8 \times 10^{-3}}{\frac{\pi}{4}\left(50 \times 10^{-3}\right)^{2}}=4.07 \mathrm{~m} / \mathrm{s}$,
$v_{2}=\frac{8 \times 10^{-3}}{\frac{\pi}{4}\left(60 \times 10^{-3}\right)^{2}}=2.83 \mathrm{~m} / \mathrm{s}$,
$v_{3}=\frac{8 \times 10^{-3}}{\frac{\pi}{4}\left(100 \times 10^{-3}\right)^{2}}=1.02 \mathrm{~m} / \mathrm{s}$
To get the pressures P_{3} at sections 3
$\frac{P_{1}}{w}+Z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{P_{3}}{w}+Z_{3}+\frac{v_{3}^{2}}{2 g}$
$Z_{1}=Z_{3}$ at the same horizontal level
$\frac{P_{1}}{w}+\frac{v_{1}^{2}}{2 g}=\frac{P_{3}}{w}+\frac{v_{3}^{2}}{2 g}$
$\frac{P_{3}}{w}=\frac{P_{1}}{w}+\frac{v_{1}^{2}}{2 g}-\frac{v_{3}^{2}}{2 g}$
$\frac{P_{3}}{9800}=\frac{24.5 \times 10^{3}}{9800}+\frac{(4.07)^{2}}{2 \times 9.8}-\frac{(1.02)^{2}}{2 \times 9.8}$

$$
\begin{aligned}
P_{3} & =32,262.25 \mathrm{~Pa} \\
& =32.3 \mathrm{kPa}
\end{aligned}
$$

T.E.L.

Good Luck

