Fluid Kinematics

(Hydrodynamics)

Kinematics describes motion in terms of displacements, velocities, and accelerations regardless to the forces which are associated with these variables.

* Definitions :

* Streamline : is a smooth imaginary curve represents one particle in the flow. The tangent of this line gives the direction of velocity at any point.

- Streamlines can never intersect.
- They can never have sudden change in direction .

Intersection or sudden change in direction means that there is a point where the velocity vector has two directions in the same time which is impossible .

* Stream tube : is a tube formed of an infinite number of streamlines which are drawn passing through a closed curve in the flow.
- No flow can go in or out the sides of this tube.

* Types of flow :

1 - Ideal and real flow

Ideal flow

Real flow

* Ideal flow: means frictionless flow, no energy is lost, viscosity is considered zero.
* Real flow: viscosity can't be neglected, there is friction. Friction causes some of the mechanical energy to be converted into heat energy and can't be restored.
$\underline{\mathbf{2}}$ - Steady and unsteady flow (with respect to time) (from time to time)

steady flow

unsteady flow
* Steady flow: pressure, velocity, flow rate (flow parameters) are constant with respect to time.
* Unsteady flow: any of the flow parameters change with time.

3 - Uniform and Non-uniform flow (from point to point)

Uniform flow

Non-uniform flow

* Uniform flow: the velocity at a given instant is the same in magnitude and direction at every point in the flow.
* Non-uniform flow: the velocity at a given instant changes from point to point.

4 - Laminar, Transient and Turbulent flow

Equations of motion :

1 - Continuity equation.
2 - Bernoulli's equation.

1 - Continuity equation:

Mass of fluid Mass of fluid
entering per unit time = leaving per unit time

$$
\begin{aligned}
m_{1}^{\circ} & =m_{2}^{\circ}=m_{3}^{\circ}=\text { const } \quad \text { mass flow rate } \\
\rho_{1} A_{1} V_{1} & =\rho_{2} A_{2} V_{2}=\rho_{3} A_{3} V_{3}
\end{aligned}
$$

* For liquids (incompressible fluid) $\rho_{1}=\rho_{2}=\rho_{3}=$ const.

$$
A_{1} V_{1}=A_{2} V_{2}=A_{3} V_{3}=Q \quad \text { discharge (volume flow rate) }
$$

Ex.:

Assuming the water moving in the pipe is an ideal fluid, relative to its speed in the 1 " diameter pipe, how fast is the water going in the $1 / 2$ " pipe?
a) $2 v_{1}$
b) $4 v_{1}$
c) $1 / 2 v_{1}$
c) $1 / 4 v_{1}$

Solution

Using the continuity equation

$$
\begin{aligned}
& A_{1} \cdot v_{1}=A_{2} \cdot v_{2} \\
& \rightarrow \quad v_{2}=\frac{A_{1}}{A_{2}} \cdot v_{1}=\left(1 \cdot \frac{2}{1}\right)^{2} \cdot v_{1}=4 v_{1}
\end{aligned}
$$

Ex.:

If pipe 1 diameter $=50 \mathrm{~mm}$, mean velocity $2 \mathrm{~m} / \mathrm{s}$, pipe 2 diameter $=$ 40 mm takes 30% of total discharge and pipe 3 diameter $=60 \mathrm{~mm}$. What are the values of discharge and mean velocity in each pipe?

Solution

$\mathrm{A}_{1} \mathrm{~V}_{1}=\frac{\pi}{4}\left(50 \times 10^{-3}\right)^{2} \times 2=3.93 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}_{2}=0.3 \times \mathrm{Q}_{1}=1.178 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}_{2}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$1.178 \times 10^{-3}=\frac{\pi}{4}\left(40 \times 10^{-3}\right)^{2} \times \mathrm{V}_{2}$

$\mathrm{V}_{2}=0.9375 \mathrm{~m} / \mathrm{s}$
$\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}$
$3.93 \times 10^{-3}=1.178 \times 10^{-3}+\mathrm{Q}_{3} \quad \therefore \mathrm{Q}_{3}=2.752 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}_{3}=\mathrm{A}_{3} \mathrm{~V}_{3}$
$2.752 \times 10^{-3}=\frac{\pi}{4}\left(60 \times 10^{-3}\right)^{2} \times \mathrm{V}_{3} \quad \therefore \mathrm{~V}_{3}=0.9733 \mathrm{~m} / \mathrm{sec}$
$\underline{2-B e r n o u l l i ' s ~ e q u a t i o n ~(e n e r g y ~ e q u a t i o n) ~}$

$E=Z+\frac{P}{\rho g}+\frac{V^{2}}{2 g}=$ const

E : total energy per unit weight (m)
Z : potential energy per unit weight (m)
$\frac{P}{\rho g}$: pressure energy per unit weight (m)
$\frac{V^{2}}{2 g}$: kinetic energy (velocity energy) per unit weight (m)

* For ideal flow :

$$
\begin{aligned}
\mathrm{E}_{1} & =\mathrm{E}_{2} \\
Z_{1}+\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g} & =Z_{2}+\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}
\end{aligned}
$$

* For Real flow

$$
\left.\begin{array}{c}
\mathrm{E}_{\mathbf{1}}-\mathrm{h}_{\text {loss } 1 \text { to } 2}=\mathrm{E}_{\mathbf{2}} \\
\mathrm{E}_{\mathbf{1}}=\mathrm{E}_{\mathbf{2}}+\mathrm{h}_{\text {loss } 1 \text { to } 2} \\
\frac{P_{1}}{\rho g}+\mathrm{Z}_{1}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+\mathrm{Z}_{2}+\frac{V_{2}^{2}}{2 g}+h_{\text {loss1to2 }} \\
\frac{P_{A}}{\rho g}+Z_{A}+\frac{V_{A}^{2}}{2 g}=\frac{P_{B}}{\phi g}+\mathrm{Z}_{B}+\frac{V_{B}^{2}}{2 g}+h_{\text {loss1to2 }} \\
\\
=0 \text { atm } \\
\mathrm{A}_{\mathbf{A}}=\mathrm{A}_{\mathbf{B}}
\end{array}\right] \begin{gathered}
\therefore \mathrm{V}_{\mathbf{A}}=\mathrm{V}_{\mathbf{B}} \\
\frac{P_{A}}{w}=\left(Z_{B}-\mathrm{Z}_{A}\right)+h_{\text {loss1to2 }}
\end{gathered}
$$

atm.

$\begin{aligned} \frac{P_{A}}{\rho g}+Z_{A}+\frac{V A}{2 g}= & \frac{p_{B}}{p g}+Z_{B}+\frac{V_{B}^{2}}{2 g}+h_{\text {lossAtoB }} \\ =0 \quad & =0 \quad=0\end{aligned}$
vel. Inside atm. dotum Tank

$$
\frac{P_{A}}{\rho g}+Z_{A}=\frac{V_{B}^{2}}{2 g}+h_{\text {lossAtoB }}
$$

Ex.:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{A}}=1 \mathrm{~cm} \\
& \mathrm{~h}_{\mathrm{A}}=2 \mathrm{~m} \\
& \frac{V_{A}^{2}}{2 g}=5 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{d}_{\mathbf{B}}=5 \mathrm{~cm}
$$

$$
\mathrm{h}_{\mathbf{B}}=5 \mathrm{~m}
$$

Determine:

1 - The velocity at B

2 -Direction of flow

Solution take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
$\frac{V_{A}^{2}}{2 g}=5 m$

$$
V_{A}=\sqrt{2^{* 10 * 5}}=10 \mathrm{~m} / \mathrm{s}
$$

C.E from A to B

$$
\begin{aligned}
& \mathrm{A}_{\mathbf{A}} \mathrm{V}_{\mathbf{A}}=\mathrm{A}_{\mathbf{B}} \mathrm{V}_{\mathbf{B}} \\
& \frac{\pi}{4}(1)^{2} * 10=\frac{\pi}{4}(5)^{2} * V_{B} \\
& \therefore V_{B}=\frac{10}{25}=0.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& E_{A}=h_{A}+Z_{A}+\frac{V_{A}^{2}}{2 g}=2+1+5=8 \mathrm{~m} \\
& E_{B}=h_{B}+Z_{B}+\frac{V_{B}^{2}}{2 g}=5+2+\frac{(0.4)^{2}}{2 * 10}=7.008 \mathrm{~m} \\
& E_{A}>E_{B}
\end{aligned}
$$

\therefore The flow from A to B

$$
\begin{aligned}
h_{\text {loss }} & =E_{A}-E_{B} \\
& =8-7.008=0.992 \cong 1 \mathrm{~m}
\end{aligned}
$$

Application of Bernoulli`s equation:

Simple Flowrate Measurement

The simplest technique to determine the steady flow rate of a liquid is to measure the amount of liquid collected over a period of time. For example, one could collect the liquid in a container of known size. If the time needed to fill the container is recorded, then the flow rate can be easily determined from the equation $\mathrm{Q}=$ Volume / Time

Measurements of flow rate:

A change in the cross-section area of a stream tube has been seen to produce an accelerated flow (change in flow velocity) and fall of pressure. By an excellent meter, flow may be calculated from pressure measurements, such as:

1. Venturi meter.
2. Orifice meter.

1. Venturi meter:

The converging tube is an efficient device for converting pressure head to velocity head, while the diverging tube converts velocity head to pressure head. Both of them may be combined to form a Venturi tube. As shown in Fig., it consists of a tube with a constricted throat (smooth entrance cone of angle about 20° as converging part), which produces an increase in velocity accompanied by a reduction in pressure, followed by a gradually diverging portion of 5° to 7° cone angle in which the velocity is transformed back into pressure with slight friction loss.

As there is a definite relation between the pressure differential and the rate of flow, the tube may be made to serve as a metering device known as a "Venturi Meter". The pressure difference between the inlet section (1) and the throat section (2) is usually measured using differential manometer. Writing the Bernoulli equation between sections (1) (inlet) and (2) (throat), we have:
$\frac{P_{1}}{\rho g}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{\text {loss }_{1 \rightarrow 2}}$
$V_{2}^{2}-V_{1}^{2}=2 g\left[\left(\frac{P_{1}}{\rho g}-\frac{P_{2}}{\rho g}\right)+\left(z_{1}-z_{2}\right)-h_{\text {loss }_{1,2}}\right]$
Continuity Eq.:
$A_{1} V_{1}=A_{2} V_{2}=Q \quad$ then, $\quad V_{1}=\frac{Q}{A_{1}} \quad \& \quad V_{2}=\frac{Q}{A_{2}}$
Then, Bernoulli equation between sections (1) (inlet) and (2) (throat), can be rewritten as:

$$
\begin{aligned}
& Q^{2}\left(\frac{1}{A_{2}^{2}}-\frac{1}{A_{1}^{2}}\right)=2 g\left[\frac{P_{1}-P_{2}}{\rho g}+\left(z_{1}-z_{2}\right)-h_{\text {loss }_{1,2}}\right] \\
& Q^{2}=\left(\frac{A_{1}^{2} A_{2}^{2}}{A_{1}^{2}-A_{2}^{2}}\right) 2 g\left[\frac{P_{1}-P_{2}}{\rho g}+\left(z_{1}-z_{2}\right)-h_{\text {loss }_{1,2}}\right] \\
& Q=\sqrt{\left(\frac{A_{1}^{2} A_{2}^{2}}{A_{1}^{2}-A_{2}^{2}}\right) 2 g\left[\frac{P_{1}-P_{2}}{\rho g}+\left(z_{1}-z_{2}\right)-h_{\text {loss }_{1,2}}\right]} \\
& Q=\frac{A_{1} A_{2}}{\sqrt{A_{1}^{2}-A_{2}^{2}}} \sqrt{2 g\left(H-h_{\text {loss } \left._{1-2}\right)}\right)} \text { or } Q=C_{d} \frac{A_{1} A_{2}}{\sqrt{A_{1}^{2}-A_{2}^{2}}} \sqrt{2 g H}
\end{aligned}
$$

Where: $\quad H=\left(\frac{P_{1}-P_{2}}{\rho g}+z_{1}-Z_{2}\right)$ and $\mathbf{C}_{\mathbf{d}}$ is a discharge coefficient

2. Orifice meter:

We can use an orifice in a pipeline as a meter in the same manner as the venturi tube. The orifice meter consists of a concentric sharp edged circular hole in a thin plate which is clamped between two flanges in a pipe line.

Thin-plate orifice in a pipe. (Scale distorted: the region of eddying turbulence will usually extend $4 D_{1}$ to $8 D_{1}$ downstream, depending on the Reynolds number.)

The flow characteristics of the orifice is similar to the flow in a venturi-meter except that the minimum section of the stream tube A_{2} occurs down stream from the orifice (section 2) owing to the formation of vena contraction. The ratio between the minimum area A_{2} and the area of orifice A_{o} is known as coefficient of contraction $C c$, i.e., $C_{c}=\frac{A_{2}}{A_{o}}$

Writing the Bernoulli equation between sections (1) and (2) (downstream), we have: $\frac{P_{1}}{\rho g}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{\text {loss }_{1 \rightarrow 2}}$

For the same horizontal level $\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+h_{\text {loss }_{1 \rightarrow 2}}$
Continuity Eq.: $A_{1} V_{1}=A_{2} V_{2}=Q$ i.e., $V_{1}=V_{2} \frac{A_{2}}{A_{1}}=\frac{C_{c} A_{o}}{A_{1}} V_{2}$
$\therefore V_{2}=\sqrt{2 g\left(\frac{P_{1}-P_{2}}{\rho g}+\frac{V_{1}^{2}}{2 g}-h_{\text {loss }_{1 \rightarrow 2}}\right)}$
$V_{2}=C_{v} \sqrt{2 g\left(\frac{P_{1}-P_{2}}{\rho g}+\frac{V_{1}^{2}}{2 g}\right)}=C_{v} \sqrt{2 g H}$

Where $H=\left(\frac{P_{1}-P_{2}}{\rho g}+\frac{V_{1}^{2}}{2 g}\right)$ and C_{v} is a velocity coefficient.
Then, $Q=A_{2} V_{2}=C_{c} A_{o} C_{v} \sqrt{2 g H}=C_{d} A_{o} \sqrt{2 g H}$
Where, $C_{d}=C_{c} \times C_{v}$-------------- discharge coefficient.

Example:

Find the discharge rate of water through the venturi tube of discharge coefficient $\mathbf{C}_{\mathbf{d}}=0.988$ that shown in Figure, if $\mathbf{D}_{1}=800 \mathrm{~mm}, \mathbf{D}_{2}=400 \mathrm{~mm}, \boldsymbol{\Delta z}=2 \mathrm{~m}$, and $\boldsymbol{R m}=150$ mmHg. . Use $\left[\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}\right.$, and $\left.g=9.807 \mathrm{~m} / \mathrm{sec}^{2}\right]$
$Q=C_{d} \frac{A_{1} A_{2}}{\sqrt{A_{1}^{2}-A_{2}^{2}}} \sqrt{2 g H}$

$$
\begin{aligned}
& A_{1}=\frac{\pi}{4} D_{1}^{2}=0.5 m^{2} \& A_{2}=\frac{\pi}{4} D_{2}^{2}=0.125 m^{2} \\
& H=\frac{P_{1}-P_{2}}{\rho g}+\Delta z
\end{aligned}
$$

For U_tube manometer

$$
P_{I}=P_{I I}
$$

$$
P_{1}+\rho_{w} g\left(R_{m}+L+\Delta z\right)=P_{2}+\rho_{w} g L+\rho_{m} g R_{m}
$$

$$
P_{1}-P_{2}=\rho_{w} g L+\rho_{m} g R_{m}-\rho_{w} g R_{m}-\rho_{w} g L-\rho_{w} g \Delta z
$$

$$
P_{1}-P_{2}=\rho_{m} g R_{m}-\rho_{w} g R_{m}-\rho_{w} g \Delta z
$$

$$
P_{1}-P_{2}+\rho_{w} g \Delta z=\rho_{w} g R_{m}\left(\frac{\rho_{m}}{\rho_{w}}-1\right)
$$

$$
\frac{P_{1}-P_{2}}{\rho_{w} g}+\Delta z=R_{m}\left(\frac{\rho_{m}}{\rho_{w}}-1\right)=H
$$

Then $H=0.15\left(\frac{13600 \mathrm{~g}}{1000 \mathrm{~g}}-1\right)=1.89 \mathrm{~m}$

Now; $Q=C_{d} \frac{A_{1} A_{2}}{\sqrt{A_{1}^{2}-A_{2}^{2}}} \sqrt{2 g H}$
$Q=0.988 \times \frac{0.5 \times 0.125}{\sqrt{(0.5)^{2}-(0.125)^{2}}} \sqrt{2 \times 9.807 \times 1.89}=0.777 \mathrm{~m}^{3} / \mathrm{sec}$
Unless specific information is available for a given venturi tube, we can assume the value of $\mathbf{C d}$ is about 0.99 for large tubes and about 0.97 or 0.98 for small ones, provided the flow is such as to give Reynolds numbers greater than about 10^{5}.

So, the dimensional analysis of a venturi tube indicates that the coefficient of discharge C_{d} should be a function of Reynolds number and of the geometric parameters D_{1} and D_{2}. Values of venturi tube coefficients are shown in figure.

Losses in pipes
Types of losses
1-Friction losses :
This type of losses exists for any flow as a result of fluid viscosity and velocity difference between fluid layers. As a result of friction, part of the fluid's mechanical energy is converted into heat energy (dissipated into atmosphere) and is considered as an energy loss.
$\underline{2-E d d y}$ losses:
This type of losses occurs due to any change in the velocity vector (magnitude or direction). This change causes some of energy to be transferred from main flow to eddies formed at corners. This part of energy is considered as energy losses.

* Friction losses ماسورة ليس بها تغيير بالمساحة لحساب

$E_{1}=E_{2}+h_{\text {loss1to2 }}$
$\frac{P_{1}}{\rho g}+z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+z_{2}+\frac{\nu_{2}^{2}}{2 g}+h_{\text {loss1to2 }}$
$\frac{P_{1}}{\rho g}=\frac{P_{2}}{\rho g}+h_{\text {loss1to2 }}$
$h_{f . l .}=\frac{P_{1}-P_{2}}{\rho g}$

تم تسميتها ${ }^{\text {f }}$ لانها كلها friction losses وليس بها

* Friction losses in laminar flow $\mathrm{Re}<2000$

Velocity distribution for laminar flow
$F_{v i s}=\mu A \frac{d u}{d y}$
From (1) \& (2)

$$
h_{f . l .}=\frac{32 \mu v L}{\rho g d^{2}}
$$

Where L is the pipe length $h_{f . l .} \alpha v$ (linear)

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{f.} . \mathrm{I}}=32 * \frac{\mu v L}{\rho g d^{2}} * \frac{v}{v} * \frac{2}{2} \\
& =32 * 2 * \frac{\mu}{\rho v d} * \frac{L}{d} \frac{v^{2}}{2 g} \\
& =\frac{64}{\mathrm{R}_{\mathrm{e}}} * \frac{L}{d} \frac{v^{2}}{2 g} \\
& h_{f . L}=f \frac{L}{d} \frac{v^{2}}{2 g} \rightarrow
\end{aligned}
$$

Another from $\quad f=\frac{64}{\mathrm{R}_{\mathrm{e}}} \quad$ where f : coefficient of friction

Note:

for laminar flow , the pipe roughness has no effect on friction losses because the velocity of the fluid layer beside the pipe wall is very small and almost stationary.

$\underline{B-\text { friction losses in turbulent flow } \mathrm{Re}>4000}$

* All the following results are experimental results written as empirical formula
$h_{f . l .}=f \frac{L}{d} \frac{v^{2}}{2 g}$
$h_{f .1 .} \alpha v^{2}$
$\mathrm{F}\left\{\begin{array}{l}\mathrm{Re}=\frac{\rho v d}{\mu} \\ \frac{\varepsilon}{d}\end{array}\right.$
transient

*Eddy losses :
All eddy losses depend only on kinetic energy $\left(\frac{v^{2}}{2 g}\right)$ of flow (not type of flow). I - change in magnitude

* Contraction

II - change in direction
(*) bend

* Enlargement

* value

$$
\begin{aligned}
& \text { at } \frac{d_{1}}{d_{2}}=\infty \quad \& \quad \theta=90^{\circ} \\
& k_{\max }=0.5 \\
& h_{l}=0.5 \frac{v^{2}}{2 g}
\end{aligned}
$$

* Enlargement

$$
h_{\ell}=k \frac{\left(v_{1}-v_{2}\right)^{2}}{2 g}
$$

$\mathrm{k}=\mathrm{fn}(\theta)$ The effect of $\frac{d_{2}}{d_{1}}$ is presented in $\left(v_{1}-v_{2}\right)$
$k_{\text {max }}$ For enlargement at $\theta=90^{\circ}$
(sudden enlargement)

$$
\begin{aligned}
& k_{\max }=1 \\
& h_{\ell}=\frac{\left(v_{1}-v_{2}\right)^{2}}{2 g}
\end{aligned}
$$

*Bend or Elbow

$$
\begin{gathered}
h_{\ell}=k \frac{v^{2}}{2 g} \\
\mathrm{k}=\mathrm{fn}(\theta, \mathrm{~d}, \text { type of bend })
\end{gathered}
$$

* valves

Globe valve

$$
\begin{aligned}
& h_{\ell}=k \frac{v^{2}}{2 g} \\
& \mathrm{k}=\mathrm{fn}(\mathrm{~d}, \text { type of valve) }
\end{aligned}
$$

Only for fully opened valves
ـعند غلق المحابس نصف يكون هناك فاقى اكبر في الطاقة لـلـك الاستخدام الامتل لها ان تكون مفتوحة بالكامل او مغلقة بالكامل

Example:

a) Calculate the discharge between the tanks.
b) One of valves is partially closed. The discharge reduced by 50% .calculate the losses in the value in this case.
a) $d=\frac{4 * 2.54}{100}=0.1 \mathrm{~m}$
$Q=A V$
$E_{1}=E_{2}+h_{\text {loss }}$
$10=f \frac{\ell}{d} \frac{v^{2}}{2 g}+k_{e n t} \frac{v^{2}}{2 g}+K_{v} \frac{v^{2}}{2 g}+K_{b} \frac{v^{2}}{2 g}+K_{v} \frac{v^{2}}{2 g}+K_{e n t} \frac{(v-o)^{2}}{2 g}$
$10=\frac{v^{2}}{2 * 9.8}\left(0.03 * \frac{800}{0.1}+0.5+2+1.5+2+1\right)$
$V=0.89 m / s$
$\mathrm{Q}=7 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
b)
$Q=0.5 Q=A v^{1}$
$\therefore 10^{-3} * 3.5=\frac{\pi}{4}(0.1)^{2} V_{1}$
$V_{1}=0.445 \mathrm{~m} / \mathrm{s}$
$E_{1}-E_{2}=h_{\text {loss }}=10$
$10=f \frac{\ell}{d} \frac{v_{1}{ }^{2}}{2 g}+k_{\text {ent }} \frac{v_{1}{ }^{2}}{2 g}+h_{\text {loss }}+K_{b} \frac{v_{1}{ }^{2}}{2 g}+K_{v} \frac{v_{1}{ }^{2}}{2 g}+K_{\max } \frac{v_{1}{ }^{2}}{2 g}$
$10=0.03 * \frac{800}{0.1}+\frac{(0.445)^{2}}{2 * 9.8} 0.5 \frac{(0.445)^{2}}{2 * 9.8}+h_{\text {loss }} 2+1.5+\frac{(0.445)^{2}}{2 * 9.8}+2+\frac{(0.445)^{2}}{2 * 9.8}+\frac{1 *(0.445-o)^{2}}{2 * 9.8}$
$\mathrm{H}_{\text {loss }}=7.5 \mathrm{~m}$ of liquid

* losses in series pipes :

$h_{\ell}=f_{1} \frac{\ell_{1}}{d_{1}} \frac{v_{1}^{2}}{2 g}+\frac{K\left(v_{1}-v_{2}\right)^{2}}{2 g}+f_{2} \frac{\ell_{2}}{d_{2}} \frac{v_{2}^{2}}{2 g}$
* losses in parallel pipes

$h_{\ell_{A \rightarrow B}}=f_{1} \frac{\ell_{1}}{d_{1}} \frac{v_{1}^{2}}{2 g}+h \ell_{\text {branching }}+f_{2} \frac{\ell_{2}}{d_{2}} \frac{v_{2}^{2}}{2 g}$
$h_{\ell_{A \rightarrow C}}=f_{1} \frac{\ell_{1}}{d_{1}} \frac{v_{1}^{2}}{2 g}+h \ell_{\text {branching }}+f_{3} \frac{\ell_{3}}{d_{3}} \frac{v_{3}^{2}}{2 g}$
$Q_{1}=Q_{2}+Q_{3}$
$A_{1} V_{1}=A_{2} V_{2}+A_{3} V_{3}$

