College of Engineering and Technology Mechanical Engineering Department Fluid Mechanics (ME 361)

Sheet 3

Bernoulli Theorem, Continuity Equation \& Flow Measurements
1- Water flows without viscous effects from the nozzle shown in figure 1.
Determine the flow rate and the height, h , to which the water can flow.

Figure 1
2- What pressure P_{1} is needed to produce a flow rate of $0.00254 \mathrm{~m}^{3} / \mathrm{s}$ from the tank shown in figure 2, where S.G of Gasoline $=0.713$.

Figure 2

3-A large open tank contains a layer of oil floating on water as shown in figure 3. The flow is inviscid. Determine:
a. The height, h, to which the water will rise.
b. The water velocity in the pipe.
c. The pressure in the horizontal pipe.

Figure 3
4- A Venturi meter having a throat diameter of 150 mm is installed in a horizontal 300 mm diameter water main. The coefficient of discharge of Venturi meter is 0.982 . Determine the difference in level of the mercury columns of the differential manometer attached to the Venturi meter if the discharge is $0.142 \mathrm{~m} 3 / \mathrm{s}$.

5- Kerosene $(\mathrm{SG}=0.85)$ flows through the venture meter shown in figure 4 with flow rates between 0.005 and $0.050 \mathrm{~m} 3 / \mathrm{s}$. determine the range in pressure difference, $P_{1}-P_{2}$ needed to measures these flow rates.

Figure 4

6- Water flows through the orifice meter shown in figure 5 at a rate of $0.0028 \mathrm{~m} 3 / \mathrm{s}$. If $\mathrm{d}=3.048 \mathrm{~cm}$, determine the value h .

Figure 5
7- Determine the flow rate through the submerged orifice, shown in figure 6 if the discharge coefficient is 0.68 .

Figure 6

